用深度学习模型分割聚合物复合材料计算机断层扫描图像中的结构缺陷

Ruslan Vorobev , Ivan Vasilev , Ivan Kremnev
{"title":"用深度学习模型分割聚合物复合材料计算机断层扫描图像中的结构缺陷","authors":"Ruslan Vorobev ,&nbsp;Ivan Vasilev ,&nbsp;Ivan Kremnev","doi":"10.1016/j.tmater.2023.100014","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate appliance of different deep learning models to the problem of semantic segmentation of structural defects in computed tomography images of fiber-reinforced polymer composite material. Specifically, we try to segment porosities and delaminations in a specimen using U-Net and DeepLabv3 neural networks. We find out that complex models struggle to generalize solutions on small data samples that are generally available to individual research teams, whereas smaller models are the right choice for approaching defect segmentation in CT images. Our experiments are based on our own laboratory data, collected with X-ray microtomography and labeled manually for the semantic segmentation task.</p></div>","PeriodicalId":101254,"journal":{"name":"Tomography of Materials and Structures","volume":"3 ","pages":"Article 100014"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of structural defects in polymer composite computed tomography images with deep learning models\",\"authors\":\"Ruslan Vorobev ,&nbsp;Ivan Vasilev ,&nbsp;Ivan Kremnev\",\"doi\":\"10.1016/j.tmater.2023.100014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate appliance of different deep learning models to the problem of semantic segmentation of structural defects in computed tomography images of fiber-reinforced polymer composite material. Specifically, we try to segment porosities and delaminations in a specimen using U-Net and DeepLabv3 neural networks. We find out that complex models struggle to generalize solutions on small data samples that are generally available to individual research teams, whereas smaller models are the right choice for approaching defect segmentation in CT images. Our experiments are based on our own laboratory data, collected with X-ray microtomography and labeled manually for the semantic segmentation task.</p></div>\",\"PeriodicalId\":101254,\"journal\":{\"name\":\"Tomography of Materials and Structures\",\"volume\":\"3 \",\"pages\":\"Article 100014\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography of Materials and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949673X23000128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography of Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949673X23000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了不同深度学习模型在纤维增强聚合物复合材料计算机断层扫描图像中结构缺陷语义分割问题中的应用。具体来说,我们试图使用U-Net和DeepLabv3神经网络来分割样本中的孔隙率和分层。我们发现,复杂的模型很难在单个研究团队通常可以获得的小数据样本上推广解决方案,而较小的模型是处理CT图像缺陷分割的正确选择。我们的实验基于我们自己的实验室数据,通过X射线显微摄影收集,并手动标记用于语义分割任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmentation of structural defects in polymer composite computed tomography images with deep learning models

We investigate appliance of different deep learning models to the problem of semantic segmentation of structural defects in computed tomography images of fiber-reinforced polymer composite material. Specifically, we try to segment porosities and delaminations in a specimen using U-Net and DeepLabv3 neural networks. We find out that complex models struggle to generalize solutions on small data samples that are generally available to individual research teams, whereas smaller models are the right choice for approaching defect segmentation in CT images. Our experiments are based on our own laboratory data, collected with X-ray microtomography and labeled manually for the semantic segmentation task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of AI crack segmentation models for additive manufacturing Contrast-enhancing staining agents for ex vivo contrast-enhanced computed tomography: A review Visualizing pulp fibers using X-ray tomography: Enhancing the contrast by labeling with iron oxide nanoparticles and the use of immersion oil 3D mineral quantification of particulate materials with rare earth mineral inclusions: Achieving sub-voxel resolution by considering the partial volume and blurring effect Geo-SegNet: A contrastive learning enhanced U-net for geomaterial segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1