中始新世放射虫种Podocyrtis chalara、Podocyrtis goetheana及其形态中间产物的形态计量学和机器学习判别

IF 1.5 4区 地球科学 Q2 PALEONTOLOGY Marine Micropaleontology Pub Date : 2023-09-18 DOI:10.1016/j.marmicro.2023.102293
Francisco Pinto , Veronica Carlsson , Mathias Meunier , Bert Van Bocxlaer , Hammouda Elbez , Marie Cueille , Pierre Boulet , Taniel Danelian
{"title":"中始新世放射虫种Podocyrtis chalara、Podocyrtis goetheana及其形态中间产物的形态计量学和机器学习判别","authors":"Francisco Pinto ,&nbsp;Veronica Carlsson ,&nbsp;Mathias Meunier ,&nbsp;Bert Van Bocxlaer ,&nbsp;Hammouda Elbez ,&nbsp;Marie Cueille ,&nbsp;Pierre Boulet ,&nbsp;Taniel Danelian","doi":"10.1016/j.marmicro.2023.102293","DOIUrl":null,"url":null,"abstract":"<div><p><span>We present various approaches to distinguish the middle Eocene species </span><em>Podocyrtis chalara</em> and <em>Podocyrtis goetheana</em>, which are end members of a trajectory of phenotypic change, and their intermediate morphogroups. We constructed a set of thirteen traditional morphological variables to classify the entire morphological variability encompassed by the two morphospecies and their intermediates <em>Podocyrtis</em> sp. cf. <em>P. chalara</em> and <em>Podocyrtis</em> sp. cf. <em>P. goetheana</em><span>. We used two methods of classification, namely Linear Discriminant Analysis<span> (LDA) and machine learning using artificial neural networks. LDA performed on the morphometric data reveals a good discrimination for </span></span><em>P. chalara</em>, <em>P. goetheana</em> and <em>Podocyrtis</em> sp. cf. <em>P. goetheana</em>, but not for <em>Podocyrtis</em> sp. cf. <em>P. chalara</em>. We used three approaches of machine learning based on different neural networks: a Convolutional Neural Network (CNN) and two Spiking Neural Networks (SNNs). Each of these neural networks was trained based on classified images of the two morphospecies and their morphological intermediates, thus constituting a different set of input data than the morphometric dataset for LDA. The neural network approaches identified the same three morphospecies recognized by LDA from a dataset of traditional measurements, i.e. <em>P</em>. <em>chalara</em>, <em>P</em>. <em>goetheana</em> and <em>Podocyrtis</em> sp. cf. <em>P. goetheana</em>, with up to 92% accuracy. Our results highlight the great potential and promising perspectives of machine learning and neural networks in the application of image-based object recognition for morphological classification, which may also contribute to more objective taxonomic decisions.</p></div>","PeriodicalId":49881,"journal":{"name":"Marine Micropaleontology","volume":"185 ","pages":"Article 102293"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphometrics and machine learning discrimination of the middle Eocene radiolarian species Podocyrtis chalara, Podocyrtis goetheana and their morphological intermediates\",\"authors\":\"Francisco Pinto ,&nbsp;Veronica Carlsson ,&nbsp;Mathias Meunier ,&nbsp;Bert Van Bocxlaer ,&nbsp;Hammouda Elbez ,&nbsp;Marie Cueille ,&nbsp;Pierre Boulet ,&nbsp;Taniel Danelian\",\"doi\":\"10.1016/j.marmicro.2023.102293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We present various approaches to distinguish the middle Eocene species </span><em>Podocyrtis chalara</em> and <em>Podocyrtis goetheana</em>, which are end members of a trajectory of phenotypic change, and their intermediate morphogroups. We constructed a set of thirteen traditional morphological variables to classify the entire morphological variability encompassed by the two morphospecies and their intermediates <em>Podocyrtis</em> sp. cf. <em>P. chalara</em> and <em>Podocyrtis</em> sp. cf. <em>P. goetheana</em><span>. We used two methods of classification, namely Linear Discriminant Analysis<span> (LDA) and machine learning using artificial neural networks. LDA performed on the morphometric data reveals a good discrimination for </span></span><em>P. chalara</em>, <em>P. goetheana</em> and <em>Podocyrtis</em> sp. cf. <em>P. goetheana</em>, but not for <em>Podocyrtis</em> sp. cf. <em>P. chalara</em>. We used three approaches of machine learning based on different neural networks: a Convolutional Neural Network (CNN) and two Spiking Neural Networks (SNNs). Each of these neural networks was trained based on classified images of the two morphospecies and their morphological intermediates, thus constituting a different set of input data than the morphometric dataset for LDA. The neural network approaches identified the same three morphospecies recognized by LDA from a dataset of traditional measurements, i.e. <em>P</em>. <em>chalara</em>, <em>P</em>. <em>goetheana</em> and <em>Podocyrtis</em> sp. cf. <em>P. goetheana</em>, with up to 92% accuracy. Our results highlight the great potential and promising perspectives of machine learning and neural networks in the application of image-based object recognition for morphological classification, which may also contribute to more objective taxonomic decisions.</p></div>\",\"PeriodicalId\":49881,\"journal\":{\"name\":\"Marine Micropaleontology\",\"volume\":\"185 \",\"pages\":\"Article 102293\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Micropaleontology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377839823000920\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PALEONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Micropaleontology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377839823000920","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了各种方法来区分中始新世物种chalara和Goteeana,它们是表型变化轨迹的末端成员,以及它们的中间形态群。我们构建了一组由13个传统形态变量组成的集合,以对两个形态物种及其中间体荚兰属所包含的整个形态变异性进行分类。参见P.chalara和荚兰属。参见P.gogeeana。我们使用了两种分类方法,即线性判别分析(LDA)和使用人工神经网络的机器学习。对形态计量学数据进行的LDA显示了对P.chalara、P.goetheana和Podcycartis sp.的良好区分。参见P.goethiana,但对Podcycrtis sp.没有。参见P.chalara。我们使用了三种基于不同神经网络的机器学习方法:卷积神经网络(CNN)和两种Spiking神经网络(SNN)。这些神经网络中的每一个都是基于两种形态物种及其形态中间体的分类图像进行训练的,从而构成了与LDA的形态测量数据集不同的一组输入数据。神经网络方法从传统测量数据集中识别出LDA识别的三种形态物种,即P.chalara、P.goetheana和Podocycartis sp.。参见P.goethiana,准确率高达92%。我们的研究结果突出了机器学习和神经网络在基于图像的对象识别应用于形态分类方面的巨大潜力和前景,这也可能有助于更客观的分类决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphometrics and machine learning discrimination of the middle Eocene radiolarian species Podocyrtis chalara, Podocyrtis goetheana and their morphological intermediates

We present various approaches to distinguish the middle Eocene species Podocyrtis chalara and Podocyrtis goetheana, which are end members of a trajectory of phenotypic change, and their intermediate morphogroups. We constructed a set of thirteen traditional morphological variables to classify the entire morphological variability encompassed by the two morphospecies and their intermediates Podocyrtis sp. cf. P. chalara and Podocyrtis sp. cf. P. goetheana. We used two methods of classification, namely Linear Discriminant Analysis (LDA) and machine learning using artificial neural networks. LDA performed on the morphometric data reveals a good discrimination for P. chalara, P. goetheana and Podocyrtis sp. cf. P. goetheana, but not for Podocyrtis sp. cf. P. chalara. We used three approaches of machine learning based on different neural networks: a Convolutional Neural Network (CNN) and two Spiking Neural Networks (SNNs). Each of these neural networks was trained based on classified images of the two morphospecies and their morphological intermediates, thus constituting a different set of input data than the morphometric dataset for LDA. The neural network approaches identified the same three morphospecies recognized by LDA from a dataset of traditional measurements, i.e. P. chalara, P. goetheana and Podocyrtis sp. cf. P. goetheana, with up to 92% accuracy. Our results highlight the great potential and promising perspectives of machine learning and neural networks in the application of image-based object recognition for morphological classification, which may also contribute to more objective taxonomic decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Micropaleontology
Marine Micropaleontology 地学-古生物学
CiteScore
3.70
自引率
15.80%
发文量
62
审稿时长
26.7 weeks
期刊介绍: Marine Micropaleontology is an international journal publishing original, innovative and significant scientific papers in all fields related to marine microfossils, including ecology and paleoecology, biology and paleobiology, paleoceanography and paleoclimatology, environmental monitoring, taphonomy, evolution and molecular phylogeny. The journal strongly encourages the publication of articles in which marine microfossils and/or their chemical composition are used to solve fundamental geological, environmental and biological problems. However, it does not publish purely stratigraphic or taxonomic papers. In Marine Micropaleontology, a special section is dedicated to short papers on new methods and protocols using marine microfossils. We solicit special issues on hot topics in marine micropaleontology and review articles on timely subjects.
期刊最新文献
Eocene to Early Miocene dinoflagellate cysts from the southern Gulf of Mexico Unraveling the palaeoecology of Paralia sulcata-dominated assemblages from Late Miocene marine deposits of Patagonia (South Atlantic, Argentina) Ocean gateways and circulation dynamics: Unveiling the deep water-mass properties in the western equatorial Pacific since the Middle Miocene Editorial Board Calcareous Nannofossil variability controlled by Milankovitch and sub-Milankovitch periodicity in the Monte San Nicola section (Gelasian GSSP / MIS 100–104)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1