让西比尔破产,尽管搅拌

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE Journal of Computer and System Sciences Pub Date : 2023-08-01 DOI:10.1016/j.jcss.2023.02.004
Diksha Gupta , Jared Saia , Maxwell Young
{"title":"让西比尔破产,尽管搅拌","authors":"Diksha Gupta ,&nbsp;Jared Saia ,&nbsp;Maxwell Young","doi":"10.1016/j.jcss.2023.02.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>A Sybil attack<span> occurs when an adversary controls multiple system identifiers (IDs). Limiting the number of Sybil (bad) IDs to a minority is critical for tolerating malicious behavior. A popular tool for enforcing a bad minority is resource burning (RB): the verifiable consumption of a network resource. Unfortunately, typical RB defenses require non-Sybil (good) IDs to consume at least as many resources as the adversary. We present a new defense, </span></span><span>Ergo</span>, that guarantees (1) there is always a bad minority; and (2) during a significant attack, the good IDs consume asymptotically less resources than the bad. Specifically, despite high churn, the good-ID RB rate is <span><math><mi>O</mi><mo>(</mo><msqrt><mrow><mi>T</mi><mi>J</mi></mrow></msqrt><mo>+</mo><mi>J</mi><mo>)</mo></math></span>, where <em>T</em> is the adversary's RB rate, and <em>J</em> is the good-ID join rate. We show this RB rate is asymptotically optimal for a large class of algorithms, and we empirically demonstrate the benefits of <span>Ergo</span>.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"135 ","pages":"Pages 89-124"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bankrupting Sybil despite churn\",\"authors\":\"Diksha Gupta ,&nbsp;Jared Saia ,&nbsp;Maxwell Young\",\"doi\":\"10.1016/j.jcss.2023.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>A Sybil attack<span> occurs when an adversary controls multiple system identifiers (IDs). Limiting the number of Sybil (bad) IDs to a minority is critical for tolerating malicious behavior. A popular tool for enforcing a bad minority is resource burning (RB): the verifiable consumption of a network resource. Unfortunately, typical RB defenses require non-Sybil (good) IDs to consume at least as many resources as the adversary. We present a new defense, </span></span><span>Ergo</span>, that guarantees (1) there is always a bad minority; and (2) during a significant attack, the good IDs consume asymptotically less resources than the bad. Specifically, despite high churn, the good-ID RB rate is <span><math><mi>O</mi><mo>(</mo><msqrt><mrow><mi>T</mi><mi>J</mi></mrow></msqrt><mo>+</mo><mi>J</mi><mo>)</mo></math></span>, where <em>T</em> is the adversary's RB rate, and <em>J</em> is the good-ID join rate. We show this RB rate is asymptotically optimal for a large class of algorithms, and we empirically demonstrate the benefits of <span>Ergo</span>.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"135 \",\"pages\":\"Pages 89-124\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000023000235\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000235","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

当对手控制多个系统标识符(ID)时,就会发生Sybil攻击。将Sybil(坏)ID的数量限制在少数对于容忍恶意行为至关重要。一个流行的强制执行坏少数的工具是资源燃烧(RB):网络资源的可验证消耗。不幸的是,典型的RB防御需要非西比尔(良好)ID来消耗至少与对手一样多的资源。我们提出了一种新的防御,埃尔戈,它保证(1)总有一个坏的少数;以及(2)在显著攻击期间,好的ID消耗的资源渐近地少于坏的ID。具体地说,尽管流失率很高,但好的ID RB率是O(TJ+J),其中T是对手的RB率,J是好的ID加入率。我们证明了这个RB速率对于一大类算法是渐近最优的,并且我们实证地证明了Ergo的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bankrupting Sybil despite churn

A Sybil attack occurs when an adversary controls multiple system identifiers (IDs). Limiting the number of Sybil (bad) IDs to a minority is critical for tolerating malicious behavior. A popular tool for enforcing a bad minority is resource burning (RB): the verifiable consumption of a network resource. Unfortunately, typical RB defenses require non-Sybil (good) IDs to consume at least as many resources as the adversary. We present a new defense, Ergo, that guarantees (1) there is always a bad minority; and (2) during a significant attack, the good IDs consume asymptotically less resources than the bad. Specifically, despite high churn, the good-ID RB rate is O(TJ+J), where T is the adversary's RB rate, and J is the good-ID join rate. We show this RB rate is asymptotically optimal for a large class of algorithms, and we empirically demonstrate the benefits of Ergo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
期刊最新文献
Time-sharing scheduling with tolerance capacities Embedding hypercubes into torus and Cartesian product of paths and/or cycles for minimizing wirelength The parameterized complexity of the survivable network design problem Monitoring the edges of product networks using distances Algorithms and Turing kernels for detecting and counting small patterns in unit disk graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1