基于化学动力学和热力学参数的人工神经网络的爆轰细胞尺寸预测

Georgios Bakalis , Maryam Valipour , Jamal Bentahar , Lyes Kadem , Honghui Teng , Hoi Dick Ng
{"title":"基于化学动力学和热力学参数的人工神经网络的爆轰细胞尺寸预测","authors":"Georgios Bakalis ,&nbsp;Maryam Valipour ,&nbsp;Jamal Bentahar ,&nbsp;Lyes Kadem ,&nbsp;Honghui Teng ,&nbsp;Hoi Dick Ng","doi":"10.1016/j.jfueco.2022.100084","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop a series of Artificial Neural Networks (ANN) using different chemical kinetic and thermodynamic input parameters to predict detonation cell sizes. The feedforward neural networks are trained and validated using available experimental data from the Caltech detonation database covering a wide variety of gaseous combustible mixtures at different initial conditions. For each combination of input parameters, a multiple-stage process is followed, which is described in detail, to first determine the best hyperparameters of the ANN (hidden layers, nodes per layer, etc.) and secondly to establish through a fitting process the optimal parameters for each specific network. The performance of the artificial neural networks with different input features is assessed using data from the same source, but that is kept independent and separate from the training and validation process of the ANN. It is found that ANN with three features can provide an accurate estimation of detonation cell size, while increasing the number of features does not improve the accuracy of the ANN. It is also found that the input parameters with the best performance relate indirectly to the stability parameter χ.</p></div>","PeriodicalId":100556,"journal":{"name":"Fuel Communications","volume":"14 ","pages":"Article 100084"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detonation cell size prediction based on artificial neural networks with chemical kinetics and thermodynamic parameters\",\"authors\":\"Georgios Bakalis ,&nbsp;Maryam Valipour ,&nbsp;Jamal Bentahar ,&nbsp;Lyes Kadem ,&nbsp;Honghui Teng ,&nbsp;Hoi Dick Ng\",\"doi\":\"10.1016/j.jfueco.2022.100084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we develop a series of Artificial Neural Networks (ANN) using different chemical kinetic and thermodynamic input parameters to predict detonation cell sizes. The feedforward neural networks are trained and validated using available experimental data from the Caltech detonation database covering a wide variety of gaseous combustible mixtures at different initial conditions. For each combination of input parameters, a multiple-stage process is followed, which is described in detail, to first determine the best hyperparameters of the ANN (hidden layers, nodes per layer, etc.) and secondly to establish through a fitting process the optimal parameters for each specific network. The performance of the artificial neural networks with different input features is assessed using data from the same source, but that is kept independent and separate from the training and validation process of the ANN. It is found that ANN with three features can provide an accurate estimation of detonation cell size, while increasing the number of features does not improve the accuracy of the ANN. It is also found that the input parameters with the best performance relate indirectly to the stability parameter χ.</p></div>\",\"PeriodicalId\":100556,\"journal\":{\"name\":\"Fuel Communications\",\"volume\":\"14 \",\"pages\":\"Article 100084\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666052022000346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666052022000346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们开发了一系列人工神经网络(ANN),使用不同的化学动力学和热力学输入参数来预测爆震单元的大小。前馈神经网络使用来自加州理工学院爆震数据库的可用实验数据进行训练和验证,该数据涵盖了不同初始条件下的各种气体可燃混合物。对于输入参数的每个组合,遵循详细描述的多阶段过程,以首先确定ANN的最佳超参数(隐藏层、每层节点等),其次通过拟合过程建立每个特定网络的最佳参数。使用来自同一来源的数据来评估具有不同输入特征的人工神经网络的性能,但这与神经网络的训练和验证过程是独立的,同时增加特征数量并不能提高神经网络的精度。研究还发现,性能最好的输入参数与稳定性参数χ间接相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detonation cell size prediction based on artificial neural networks with chemical kinetics and thermodynamic parameters

In this paper, we develop a series of Artificial Neural Networks (ANN) using different chemical kinetic and thermodynamic input parameters to predict detonation cell sizes. The feedforward neural networks are trained and validated using available experimental data from the Caltech detonation database covering a wide variety of gaseous combustible mixtures at different initial conditions. For each combination of input parameters, a multiple-stage process is followed, which is described in detail, to first determine the best hyperparameters of the ANN (hidden layers, nodes per layer, etc.) and secondly to establish through a fitting process the optimal parameters for each specific network. The performance of the artificial neural networks with different input features is assessed using data from the same source, but that is kept independent and separate from the training and validation process of the ANN. It is found that ANN with three features can provide an accurate estimation of detonation cell size, while increasing the number of features does not improve the accuracy of the ANN. It is also found that the input parameters with the best performance relate indirectly to the stability parameter χ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biofuel in Ghana: Potentials and strategies for policy implementation Chemical agents for enhanced oil recovery: A comparison of a switchable hydrophilic solvent and deep eutectic solvent Properties and Autoignition reactivity of diesel boiling range ethers produced from Guerbet alcohols Assessment of potential sites for biogas production plants from domestic, agricultural, and livestock waste Effects of difference in heating sources on ammonia reactivity: Possibility for photolysis-assisted ammonia combustion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1