Ankurkumar J. Khimani , Sunil H. Chaki , Ranjan Kr. Giri , Reena R. Meena , Rohitkumar M. Kannaujiya , Milind P. Deshpande
{"title":"声化学获得的SnS2纳米颗粒的热探测:TG残留SnS2的元素、结构和形态研究","authors":"Ankurkumar J. Khimani , Sunil H. Chaki , Ranjan Kr. Giri , Reena R. Meena , Rohitkumar M. Kannaujiya , Milind P. Deshpande","doi":"10.1016/j.ctta.2023.100104","DOIUrl":null,"url":null,"abstract":"<div><p>The nanoparticles (Nps) of tin disulfide (SnS<sub>2</sub>) are synthesized by sonochemical route. The Nps are characterized by dispersive analysis of X-ray energy (EDAX) and X-ray photoelectron spectroscopy (XPS) to get the chemical composition. The diffraction of X-ray (XRD) is used for determination of phase and crystal structure. The as-synthesized Nps are polycrystalline and possess hexagonal structure. The surface morphology of the as-synthesized Nps is examined by electron microscopy in scanning (SEM) and high-resolution transmission modes. The residual sample after the thermal analysis is characterized by EDAX, XPS, XRD, SEM and Fourier transformed infra-red spectroscopy. The obtained results of the post-thermal analyzed and as-synthesized SnS<sub>2</sub> Nps samples are compared. The thermal analysis of the Nps is carried out by recording the thermogravimetric and differential thermogravimetric curves. These simultaneous thermo-curves are recorded in the temperature range of ambient to 850 K in inert nitrogen atmosphere for three heating rates of 5, 10, 15 and 20 K·min<sup>−1</sup>. The thermal curves data are analyzed by the isoconversional Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, and Friedman methods, and the thermodynamic parameters; activation energy (E<sub>a</sub>), change in activation entropy (ΔS*), change in activation enthalpy (ΔH*) and change in activation Gibb's free energy (ΔG*) are determined. All the obtained outcomes are discussed in detail.</p></div>","PeriodicalId":9781,"journal":{"name":"Chemical Thermodynamics and Thermal Analysis","volume":"9 ","pages":"Article 100104"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Thermal exploration of sonochemically achieved SnS2 nanoparticles: Elemental, structural, and morphological investigations of TG residual SnS2\",\"authors\":\"Ankurkumar J. Khimani , Sunil H. Chaki , Ranjan Kr. Giri , Reena R. Meena , Rohitkumar M. Kannaujiya , Milind P. Deshpande\",\"doi\":\"10.1016/j.ctta.2023.100104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The nanoparticles (Nps) of tin disulfide (SnS<sub>2</sub>) are synthesized by sonochemical route. The Nps are characterized by dispersive analysis of X-ray energy (EDAX) and X-ray photoelectron spectroscopy (XPS) to get the chemical composition. The diffraction of X-ray (XRD) is used for determination of phase and crystal structure. The as-synthesized Nps are polycrystalline and possess hexagonal structure. The surface morphology of the as-synthesized Nps is examined by electron microscopy in scanning (SEM) and high-resolution transmission modes. The residual sample after the thermal analysis is characterized by EDAX, XPS, XRD, SEM and Fourier transformed infra-red spectroscopy. The obtained results of the post-thermal analyzed and as-synthesized SnS<sub>2</sub> Nps samples are compared. The thermal analysis of the Nps is carried out by recording the thermogravimetric and differential thermogravimetric curves. These simultaneous thermo-curves are recorded in the temperature range of ambient to 850 K in inert nitrogen atmosphere for three heating rates of 5, 10, 15 and 20 K·min<sup>−1</sup>. The thermal curves data are analyzed by the isoconversional Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, and Friedman methods, and the thermodynamic parameters; activation energy (E<sub>a</sub>), change in activation entropy (ΔS*), change in activation enthalpy (ΔH*) and change in activation Gibb's free energy (ΔG*) are determined. All the obtained outcomes are discussed in detail.</p></div>\",\"PeriodicalId\":9781,\"journal\":{\"name\":\"Chemical Thermodynamics and Thermal Analysis\",\"volume\":\"9 \",\"pages\":\"Article 100104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Thermodynamics and Thermal Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667312623000019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Thermodynamics and Thermal Analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667312623000019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal exploration of sonochemically achieved SnS2 nanoparticles: Elemental, structural, and morphological investigations of TG residual SnS2
The nanoparticles (Nps) of tin disulfide (SnS2) are synthesized by sonochemical route. The Nps are characterized by dispersive analysis of X-ray energy (EDAX) and X-ray photoelectron spectroscopy (XPS) to get the chemical composition. The diffraction of X-ray (XRD) is used for determination of phase and crystal structure. The as-synthesized Nps are polycrystalline and possess hexagonal structure. The surface morphology of the as-synthesized Nps is examined by electron microscopy in scanning (SEM) and high-resolution transmission modes. The residual sample after the thermal analysis is characterized by EDAX, XPS, XRD, SEM and Fourier transformed infra-red spectroscopy. The obtained results of the post-thermal analyzed and as-synthesized SnS2 Nps samples are compared. The thermal analysis of the Nps is carried out by recording the thermogravimetric and differential thermogravimetric curves. These simultaneous thermo-curves are recorded in the temperature range of ambient to 850 K in inert nitrogen atmosphere for three heating rates of 5, 10, 15 and 20 K·min−1. The thermal curves data are analyzed by the isoconversional Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, and Friedman methods, and the thermodynamic parameters; activation energy (Ea), change in activation entropy (ΔS*), change in activation enthalpy (ΔH*) and change in activation Gibb's free energy (ΔG*) are determined. All the obtained outcomes are discussed in detail.