Philippe Pouletaut , Yoann Tatarenko , Mashhour K. Chakouch , Meng Li , Venus Joumaa , John R. Hawse , Walter Herzog , Simon Chatelin , Sabine F. Bensamoun
{"title":"啮齿类动物骨骼肌的多尺度被动力学表征","authors":"Philippe Pouletaut , Yoann Tatarenko , Mashhour K. Chakouch , Meng Li , Venus Joumaa , John R. Hawse , Walter Herzog , Simon Chatelin , Sabine F. Bensamoun","doi":"10.1016/j.irbm.2023.100800","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To experimentally measure selected passive properties of skeletal muscle<span> at three different scales (macroscopic scale: whole muscle, microscopic scale: single skinned fiber, and submicron scale: single myofibril) within the same animal model (mice), and to compare a primarily slow-twitch fiber muscle (soleus) and a primarily fast-twitch fiber muscle (extensor digitorum longus, EDL) for each scale.</span></p></div><div><h3>Methods</h3><p>Healthy 3 months old wild-type C57BL6 mice were used. To characterize each scale, soleus (N = 11), EDL (N = 9), slow fibers (N = 17), fast fibers (N = 16), and myofibrils from soleus (N = 11) and EDL (N = 11) were harvested. Passive mechanical (ramp, relaxation) tests were applied at each scale to compare the passive properties (Young's modulus, static and dynamic stresses) within a given scale, across scales and between muscle types.</p></div><div><h3>Results</h3><p>The soleus and EDL showed significant passive mechanical differences at the macroscopic scale while no variation was observed between both tissues at the microscopic and submicron scales. The results highlight the importance of the scale that is used to mechanically characterize a multiscale tissue.</p></div><div><h3>Conclusion</h3><p>The present work will allow for a better understanding of the multiscale passive mechanical properties for two muscles with vastly differing physiological and metabolic properties. This study provides referent data to the body of literature that can be built upon in future work.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Passive Mechanical Characterization of Rodent Skeletal Muscle\",\"authors\":\"Philippe Pouletaut , Yoann Tatarenko , Mashhour K. Chakouch , Meng Li , Venus Joumaa , John R. Hawse , Walter Herzog , Simon Chatelin , Sabine F. Bensamoun\",\"doi\":\"10.1016/j.irbm.2023.100800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>To experimentally measure selected passive properties of skeletal muscle<span> at three different scales (macroscopic scale: whole muscle, microscopic scale: single skinned fiber, and submicron scale: single myofibril) within the same animal model (mice), and to compare a primarily slow-twitch fiber muscle (soleus) and a primarily fast-twitch fiber muscle (extensor digitorum longus, EDL) for each scale.</span></p></div><div><h3>Methods</h3><p>Healthy 3 months old wild-type C57BL6 mice were used. To characterize each scale, soleus (N = 11), EDL (N = 9), slow fibers (N = 17), fast fibers (N = 16), and myofibrils from soleus (N = 11) and EDL (N = 11) were harvested. Passive mechanical (ramp, relaxation) tests were applied at each scale to compare the passive properties (Young's modulus, static and dynamic stresses) within a given scale, across scales and between muscle types.</p></div><div><h3>Results</h3><p>The soleus and EDL showed significant passive mechanical differences at the macroscopic scale while no variation was observed between both tissues at the microscopic and submicron scales. The results highlight the importance of the scale that is used to mechanically characterize a multiscale tissue.</p></div><div><h3>Conclusion</h3><p>The present work will allow for a better understanding of the multiscale passive mechanical properties for two muscles with vastly differing physiological and metabolic properties. This study provides referent data to the body of literature that can be built upon in future work.</p></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031823000490\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031823000490","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Multiscale Passive Mechanical Characterization of Rodent Skeletal Muscle
Purpose
To experimentally measure selected passive properties of skeletal muscle at three different scales (macroscopic scale: whole muscle, microscopic scale: single skinned fiber, and submicron scale: single myofibril) within the same animal model (mice), and to compare a primarily slow-twitch fiber muscle (soleus) and a primarily fast-twitch fiber muscle (extensor digitorum longus, EDL) for each scale.
Methods
Healthy 3 months old wild-type C57BL6 mice were used. To characterize each scale, soleus (N = 11), EDL (N = 9), slow fibers (N = 17), fast fibers (N = 16), and myofibrils from soleus (N = 11) and EDL (N = 11) were harvested. Passive mechanical (ramp, relaxation) tests were applied at each scale to compare the passive properties (Young's modulus, static and dynamic stresses) within a given scale, across scales and between muscle types.
Results
The soleus and EDL showed significant passive mechanical differences at the macroscopic scale while no variation was observed between both tissues at the microscopic and submicron scales. The results highlight the importance of the scale that is used to mechanically characterize a multiscale tissue.
Conclusion
The present work will allow for a better understanding of the multiscale passive mechanical properties for two muscles with vastly differing physiological and metabolic properties. This study provides referent data to the body of literature that can be built upon in future work.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…