剥落石墨/铁氧体填充环氧复合材料对微波吸收和力学性能的综合影响

Q2 Physics and Astronomy Physics Open Pub Date : 2023-02-01 DOI:10.1016/j.physo.2023.100138
Shubham Mishra, Vivek Pratap, Ashwani Kumar Chaurasia, Amit Kumar Soni, Ashish Dubey, Alok Kumar Dixit
{"title":"剥落石墨/铁氧体填充环氧复合材料对微波吸收和力学性能的综合影响","authors":"Shubham Mishra,&nbsp;Vivek Pratap,&nbsp;Ashwani Kumar Chaurasia,&nbsp;Amit Kumar Soni,&nbsp;Ashish Dubey,&nbsp;Alok Kumar Dixit","doi":"10.1016/j.physo.2023.100138","DOIUrl":null,"url":null,"abstract":"<div><p>Radar absorbing structural (RAS) composites are laminate with a low reflection coefficient for the electromagnetic illumination in microwave frequency range, and thus it can be used in the civil and stealth applications. In this study, a series of Exfoliated Graphite (EG) in combination with U-type barium hexaferrite based epoxy composites was fabricated with varying weight percentages (0.25, 0.50, 0.75 and 1.00 wt%) of EG and fixed wt.% (60 wt%) of U-type hexaferrite through wet mixing and compression moulding technique. Here, Raman spectra shows the EG to be defect-free characteristics. Subsequently, prepared composites were measured for microstructure and electromagnetic (EM) properties in 8.2–12.4 GHz frequency range (X-band). Further, complex permittivity (ε<sub>r</sub> = <em>ε</em>′−jε″) and complex permeability (μ<sub>r</sub> = μ′−jμ″) of the designed composites were measured using Vector Network Analyzer (VNA). Designed EG/hexaferrite-epoxy composite shows maximum real permittivity and permeability values (<em>ε</em>′ = 18.90 and μ′ = 0.91) for 3.3 mm thickness with minimum reflection loss −8.43 dB with 0.75 wt % EG filled (Sample-3)in X-band. While, it can withstand the different mechanical forces and shown the better absorption mechanism.EG plays important role due to their unique properties with optimize loading percentages in ferrite-epoxy composites. It may be concluded that, optimized EG/hexaferrite based composites determine as good microwave absorber in 8.2–12.4 GHz frequency ranges. Consequently, the prepared structural composites can be used to design the microwave absorbers and electromagnetic interference (EMI) shields for stealth applications.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"14 ","pages":"Article 100138"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined effect of exfoliated graphite/ferrite filled epoxy composites on microwave absorbing and mechanical properties\",\"authors\":\"Shubham Mishra,&nbsp;Vivek Pratap,&nbsp;Ashwani Kumar Chaurasia,&nbsp;Amit Kumar Soni,&nbsp;Ashish Dubey,&nbsp;Alok Kumar Dixit\",\"doi\":\"10.1016/j.physo.2023.100138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Radar absorbing structural (RAS) composites are laminate with a low reflection coefficient for the electromagnetic illumination in microwave frequency range, and thus it can be used in the civil and stealth applications. In this study, a series of Exfoliated Graphite (EG) in combination with U-type barium hexaferrite based epoxy composites was fabricated with varying weight percentages (0.25, 0.50, 0.75 and 1.00 wt%) of EG and fixed wt.% (60 wt%) of U-type hexaferrite through wet mixing and compression moulding technique. Here, Raman spectra shows the EG to be defect-free characteristics. Subsequently, prepared composites were measured for microstructure and electromagnetic (EM) properties in 8.2–12.4 GHz frequency range (X-band). Further, complex permittivity (ε<sub>r</sub> = <em>ε</em>′−jε″) and complex permeability (μ<sub>r</sub> = μ′−jμ″) of the designed composites were measured using Vector Network Analyzer (VNA). Designed EG/hexaferrite-epoxy composite shows maximum real permittivity and permeability values (<em>ε</em>′ = 18.90 and μ′ = 0.91) for 3.3 mm thickness with minimum reflection loss −8.43 dB with 0.75 wt % EG filled (Sample-3)in X-band. While, it can withstand the different mechanical forces and shown the better absorption mechanism.EG plays important role due to their unique properties with optimize loading percentages in ferrite-epoxy composites. It may be concluded that, optimized EG/hexaferrite based composites determine as good microwave absorber in 8.2–12.4 GHz frequency ranges. Consequently, the prepared structural composites can be used to design the microwave absorbers and electromagnetic interference (EMI) shields for stealth applications.</p></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"14 \",\"pages\":\"Article 100138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032623000030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032623000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

雷达吸收结构复合材料是一种对微波频率范围内的电磁照射具有低反射系数的层压板,可用于民用和隐身应用。在本研究中,通过湿法混合和压模技术,用不同重量百分比(0.25、0.50、0.75和1.00wt%)的EG和固定重量百分比(60wt%)的U型六铁氧体制备了一系列剥离石墨(EG)与U型钡基六铁氧基环氧复合材料。这里,拉曼光谱显示EG是无缺陷的特性。随后,测量了制备的复合材料在8.2–12.4 GHz频率范围(X波段)内的微观结构和电磁(EM)性能。此外,使用矢量网络分析仪(VNA)测量了所设计复合材料的复介电常数(εr=ε′−jε〃)和复磁导率(μr=μ′−jμ〃)。设计的EG/六铁氧体-环氧树脂复合材料在3.3 mm厚度下显示出最大的实际介电常数和磁导率值(ε′=18.90,μ′=0.91),在X波段填充0.75wt%EG(样品-3)时,最小反射损耗为-8.43 dB。同时,它可以承受不同的机械力,并表现出更好的吸收机制。EG在铁氧体-环氧树脂复合材料中以其独特的性能和最佳的负载百分比发挥着重要作用。可以得出结论,优化的EG/六铁氧体基复合材料在8.2–12.4 GHz频率范围内确定为良好的微波吸收剂。因此,所制备的结构复合材料可用于设计隐身应用的微波吸收剂和电磁干扰(EMI)屏蔽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined effect of exfoliated graphite/ferrite filled epoxy composites on microwave absorbing and mechanical properties

Radar absorbing structural (RAS) composites are laminate with a low reflection coefficient for the electromagnetic illumination in microwave frequency range, and thus it can be used in the civil and stealth applications. In this study, a series of Exfoliated Graphite (EG) in combination with U-type barium hexaferrite based epoxy composites was fabricated with varying weight percentages (0.25, 0.50, 0.75 and 1.00 wt%) of EG and fixed wt.% (60 wt%) of U-type hexaferrite through wet mixing and compression moulding technique. Here, Raman spectra shows the EG to be defect-free characteristics. Subsequently, prepared composites were measured for microstructure and electromagnetic (EM) properties in 8.2–12.4 GHz frequency range (X-band). Further, complex permittivity (εr = ε′−jε″) and complex permeability (μr = μ′−jμ″) of the designed composites were measured using Vector Network Analyzer (VNA). Designed EG/hexaferrite-epoxy composite shows maximum real permittivity and permeability values (ε′ = 18.90 and μ′ = 0.91) for 3.3 mm thickness with minimum reflection loss −8.43 dB with 0.75 wt % EG filled (Sample-3)in X-band. While, it can withstand the different mechanical forces and shown the better absorption mechanism.EG plays important role due to their unique properties with optimize loading percentages in ferrite-epoxy composites. It may be concluded that, optimized EG/hexaferrite based composites determine as good microwave absorber in 8.2–12.4 GHz frequency ranges. Consequently, the prepared structural composites can be used to design the microwave absorbers and electromagnetic interference (EMI) shields for stealth applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
期刊最新文献
Bifurcation and multi-stability analysis of microwave engineering systems: Insights from the Burger–Fisher equation New definitions of the effective nuclear charge and its application to estimate the matrix element ⟨n,l|rβ|n′,l′⟩ Influence of Nd3+ on structural, electrical and magnetic properties of Ni-Cd nanoferrites Diffusion across a concentration step: Strongly nonmonotonic evolution into thermodynamic equilibrium Characterizing stochastic solitons behavior in (3+1)-dimensional Schrödinger equation with Cubic–Quintic nonlinearity using improved modified extended tanh-function scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1