吸收层析成像测量的元数据

Stuart R. Stock , Francesco De Carlo
{"title":"吸收层析成像测量的元数据","authors":"Stuart R. Stock ,&nbsp;Francesco De Carlo","doi":"10.1016/j.tmater.2023.100015","DOIUrl":null,"url":null,"abstract":"<div><p>The simplicity of nonclinical x-ray tomography data collection has caused some to overlook the importance of saving additional experimental information or experiment meta-data. Sample meta-data are often saved in the experimenter’s logbook while meta-data about the instrument and experimental conditions are saved by the instrument itself or by the instrument operator. The lack of standardization of this approach has limited the development of automatic tools for data analysis and experiment logging but has also hindered the ability to reproduce the data collection and data analysis under the same conditions. In this paper we introduce tomo-meta, a publicly available repository of laboratory and synchrotron based tomography instrument meta-data files with the aim of presenting how meta-data are currently collected and identify best practices that enable data collection and data analysis repeatability. Structured and machine readable meta-data files, such as HDF, CSV, JSON, XML, etc., are essential for creating automatic processing pipeline. When the tomography meta-data files are structured as machine readable, we also provide a simple python script to automatically load them into a python dictionary.</p></div>","PeriodicalId":101254,"journal":{"name":"Tomography of Materials and Structures","volume":"3 ","pages":"Article 100015"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-data for absorption tomography measurements\",\"authors\":\"Stuart R. Stock ,&nbsp;Francesco De Carlo\",\"doi\":\"10.1016/j.tmater.2023.100015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The simplicity of nonclinical x-ray tomography data collection has caused some to overlook the importance of saving additional experimental information or experiment meta-data. Sample meta-data are often saved in the experimenter’s logbook while meta-data about the instrument and experimental conditions are saved by the instrument itself or by the instrument operator. The lack of standardization of this approach has limited the development of automatic tools for data analysis and experiment logging but has also hindered the ability to reproduce the data collection and data analysis under the same conditions. In this paper we introduce tomo-meta, a publicly available repository of laboratory and synchrotron based tomography instrument meta-data files with the aim of presenting how meta-data are currently collected and identify best practices that enable data collection and data analysis repeatability. Structured and machine readable meta-data files, such as HDF, CSV, JSON, XML, etc., are essential for creating automatic processing pipeline. When the tomography meta-data files are structured as machine readable, we also provide a simple python script to automatically load them into a python dictionary.</p></div>\",\"PeriodicalId\":101254,\"journal\":{\"name\":\"Tomography of Materials and Structures\",\"volume\":\"3 \",\"pages\":\"Article 100015\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography of Materials and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949673X2300013X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography of Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949673X2300013X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非临床x射线断层扫描数据收集的简单性导致一些人忽视了保存额外实验信息或实验元数据的重要性。样本元数据通常保存在实验者的日志中,而关于仪器和实验条件的元数据则由仪器本身或仪器操作员保存。这种方法缺乏标准化,限制了数据分析和实验测井自动化工具的开发,但也阻碍了在相同条件下重现数据收集和数据分析的能力。在本文中,我们介绍了tomo-meta,这是一个公开的实验室和同步加速器断层扫描仪器元数据文件库,目的是介绍目前如何收集元数据,并确定能够实现数据收集和数据分析可重复性的最佳实践。结构化和机器可读的元数据文件,如HDF、CSV、JSON、XML等,对于创建自动处理管道至关重要。当断层扫描元数据文件被构造为机器可读时,我们还提供了一个简单的python脚本来自动将它们加载到python字典中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Meta-data for absorption tomography measurements

The simplicity of nonclinical x-ray tomography data collection has caused some to overlook the importance of saving additional experimental information or experiment meta-data. Sample meta-data are often saved in the experimenter’s logbook while meta-data about the instrument and experimental conditions are saved by the instrument itself or by the instrument operator. The lack of standardization of this approach has limited the development of automatic tools for data analysis and experiment logging but has also hindered the ability to reproduce the data collection and data analysis under the same conditions. In this paper we introduce tomo-meta, a publicly available repository of laboratory and synchrotron based tomography instrument meta-data files with the aim of presenting how meta-data are currently collected and identify best practices that enable data collection and data analysis repeatability. Structured and machine readable meta-data files, such as HDF, CSV, JSON, XML, etc., are essential for creating automatic processing pipeline. When the tomography meta-data files are structured as machine readable, we also provide a simple python script to automatically load them into a python dictionary.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of AI crack segmentation models for additive manufacturing Contrast-enhancing staining agents for ex vivo contrast-enhanced computed tomography: A review Visualizing pulp fibers using X-ray tomography: Enhancing the contrast by labeling with iron oxide nanoparticles and the use of immersion oil 3D mineral quantification of particulate materials with rare earth mineral inclusions: Achieving sub-voxel resolution by considering the partial volume and blurring effect Geo-SegNet: A contrastive learning enhanced U-net for geomaterial segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1