{"title":"介绍了用于生产防x射线辐射防护涂层的纳米粒子和合适的聚合物衬底","authors":"Maryam Teymoori, Khalil Pourshamsian","doi":"10.1016/j.jsse.2023.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>The use of X-rays in CT-scan imaging in the treatment stages of patients is inevitable, but there is still a lack of suitable coverings in order to eliminate the risk of this radiation coming into contact with humans and its dangerous consequences. In this study, at first, bismuth and zirconia nanoparticles were synthesized using olive tree leaves. The structure of the synthesized nanoparticles was confirmed by scanning electron microscopy and X-ray diffraction. Then seven composites were prepared using an twin screw extruder machine. The output sheets had a thickness of 1 mm. Structural properties such as surface morphology, density of prepared composites, mechanical properties of Young's modulus, thermal gravimetric analysis and retention of loaded particles after three times washing were investigated. The sheets were cut into 10 cm<sup>2</sup> dimensions and their X-ray attenuation ability was investigated. The results indicate that all sheets filled with bismuth and zirconia particles and nanoparticles have more X-ray attenuation than pure polymer. Among the prepared sheets, composites LDPE (77%) + Bi<sub>2</sub>O<sub>3</sub> (20%) +MWCNTs (3%), LDPE (80%) + Bi<sub>2</sub>O<sub>3</sub> (20%), and LDPE (77%) + Bi<sub>2</sub>O<sub>3</sub> (10%) + ZrO<sub>2</sub> (10%) + MWCNTs (3%) in order showed the highest X-ray attenuation effect and are competitive with standard samples. Carbon nanotubes showed a synergistic effect in X-ray attenuation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introduction of nanoparticles and suitable polymer substrate for production of protective coatings against X-ray radiation\",\"authors\":\"Maryam Teymoori, Khalil Pourshamsian\",\"doi\":\"10.1016/j.jsse.2023.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of X-rays in CT-scan imaging in the treatment stages of patients is inevitable, but there is still a lack of suitable coverings in order to eliminate the risk of this radiation coming into contact with humans and its dangerous consequences. In this study, at first, bismuth and zirconia nanoparticles were synthesized using olive tree leaves. The structure of the synthesized nanoparticles was confirmed by scanning electron microscopy and X-ray diffraction. Then seven composites were prepared using an twin screw extruder machine. The output sheets had a thickness of 1 mm. Structural properties such as surface morphology, density of prepared composites, mechanical properties of Young's modulus, thermal gravimetric analysis and retention of loaded particles after three times washing were investigated. The sheets were cut into 10 cm<sup>2</sup> dimensions and their X-ray attenuation ability was investigated. The results indicate that all sheets filled with bismuth and zirconia particles and nanoparticles have more X-ray attenuation than pure polymer. Among the prepared sheets, composites LDPE (77%) + Bi<sub>2</sub>O<sub>3</sub> (20%) +MWCNTs (3%), LDPE (80%) + Bi<sub>2</sub>O<sub>3</sub> (20%), and LDPE (77%) + Bi<sub>2</sub>O<sub>3</sub> (10%) + ZrO<sub>2</sub> (10%) + MWCNTs (3%) in order showed the highest X-ray attenuation effect and are competitive with standard samples. Carbon nanotubes showed a synergistic effect in X-ray attenuation.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246889672300040X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246889672300040X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Introduction of nanoparticles and suitable polymer substrate for production of protective coatings against X-ray radiation
The use of X-rays in CT-scan imaging in the treatment stages of patients is inevitable, but there is still a lack of suitable coverings in order to eliminate the risk of this radiation coming into contact with humans and its dangerous consequences. In this study, at first, bismuth and zirconia nanoparticles were synthesized using olive tree leaves. The structure of the synthesized nanoparticles was confirmed by scanning electron microscopy and X-ray diffraction. Then seven composites were prepared using an twin screw extruder machine. The output sheets had a thickness of 1 mm. Structural properties such as surface morphology, density of prepared composites, mechanical properties of Young's modulus, thermal gravimetric analysis and retention of loaded particles after three times washing were investigated. The sheets were cut into 10 cm2 dimensions and their X-ray attenuation ability was investigated. The results indicate that all sheets filled with bismuth and zirconia particles and nanoparticles have more X-ray attenuation than pure polymer. Among the prepared sheets, composites LDPE (77%) + Bi2O3 (20%) +MWCNTs (3%), LDPE (80%) + Bi2O3 (20%), and LDPE (77%) + Bi2O3 (10%) + ZrO2 (10%) + MWCNTs (3%) in order showed the highest X-ray attenuation effect and are competitive with standard samples. Carbon nanotubes showed a synergistic effect in X-ray attenuation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.