{"title":"用MCDF-RCI方法计算Sc XX的能级、辐射跃迁参数、超精细结构常数AJ - BJ、land<s:1> gJ因子和同位素位移","authors":"Shikha Rathi, Lalita Sharma","doi":"10.1016/j.physo.2023.100160","DOIUrl":null,"url":null,"abstract":"<div><p>Large scale calculations for the energy levels, transition rates, oscillator strengths, lifetimes, hyperfine interaction constants, Landé <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> factors, and isotope shift factors have been performed for <span><math><mrow><mn>1</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><mi>s</mi><mi>n</mi><mi>l</mi></mrow></math></span> <span><math><mrow><mo>(</mo><mi>n</mi><mo>=</mo><mn>2</mn><mo>−</mo><mn>8</mn><mspace></mspace><mi>and</mi><mspace></mspace><mi>l</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span> levels of He-like Sc XX ion. The general-purpose relativistic atomic structure package (GRASP2018) based on the fully relativistic multiconfiguration Dirac–Fock (MCDF) method is used to carry out the calculations. The leading quantum electrodynamic corrections, Breit interaction and nuclear recoil effects are also included in the succeeding relativistic configuration interaction (RCI) calculations. The relativistic isotope shift (RIS4) programme is used to determine the mass and field shifts factors. Furthermore, the percentage uncertainty in the transition parameters and lifetimes is estimated. A detailed comparison of the present results with the corresponding values from the NIST database and other theoretical and experimental works, wherever available, has been done, and an excellent agreement is achieved. A large section of the results is reported for the first time in the present work.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"16 ","pages":"Article 100160"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculations of energy levels, radiative transition parameters, hyperfine structure constants AJ - BJ, Landé gJ factors and isotope shifts for Sc XX using the MCDF-RCI method\",\"authors\":\"Shikha Rathi, Lalita Sharma\",\"doi\":\"10.1016/j.physo.2023.100160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large scale calculations for the energy levels, transition rates, oscillator strengths, lifetimes, hyperfine interaction constants, Landé <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> factors, and isotope shift factors have been performed for <span><math><mrow><mn>1</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><mi>s</mi><mi>n</mi><mi>l</mi></mrow></math></span> <span><math><mrow><mo>(</mo><mi>n</mi><mo>=</mo><mn>2</mn><mo>−</mo><mn>8</mn><mspace></mspace><mi>and</mi><mspace></mspace><mi>l</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span> levels of He-like Sc XX ion. The general-purpose relativistic atomic structure package (GRASP2018) based on the fully relativistic multiconfiguration Dirac–Fock (MCDF) method is used to carry out the calculations. The leading quantum electrodynamic corrections, Breit interaction and nuclear recoil effects are also included in the succeeding relativistic configuration interaction (RCI) calculations. The relativistic isotope shift (RIS4) programme is used to determine the mass and field shifts factors. Furthermore, the percentage uncertainty in the transition parameters and lifetimes is estimated. A detailed comparison of the present results with the corresponding values from the NIST database and other theoretical and experimental works, wherever available, has been done, and an excellent agreement is achieved. A large section of the results is reported for the first time in the present work.</p></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"16 \",\"pages\":\"Article 100160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266603262300025X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266603262300025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Calculations of energy levels, radiative transition parameters, hyperfine structure constants AJ - BJ, Landé gJ factors and isotope shifts for Sc XX using the MCDF-RCI method
Large scale calculations for the energy levels, transition rates, oscillator strengths, lifetimes, hyperfine interaction constants, Landé factors, and isotope shift factors have been performed for and levels of He-like Sc XX ion. The general-purpose relativistic atomic structure package (GRASP2018) based on the fully relativistic multiconfiguration Dirac–Fock (MCDF) method is used to carry out the calculations. The leading quantum electrodynamic corrections, Breit interaction and nuclear recoil effects are also included in the succeeding relativistic configuration interaction (RCI) calculations. The relativistic isotope shift (RIS4) programme is used to determine the mass and field shifts factors. Furthermore, the percentage uncertainty in the transition parameters and lifetimes is estimated. A detailed comparison of the present results with the corresponding values from the NIST database and other theoretical and experimental works, wherever available, has been done, and an excellent agreement is achieved. A large section of the results is reported for the first time in the present work.