{"title":"土拉菌(Francisella tularensis, Ftu-1) a类β-内酰胺酶的独特亚类特征及其对AMR的认识","authors":"Sourya Bhattacharya, Vivek Junghare, Mousumi Hazra, Niteesh Kumar Pandey, Abirlal Mukherjee, Kunal Dhankhar, Neeladrisingha Das, Partha Roy, Ramesh Chandra Dubey and Saugata Hazra*, ","doi":"10.1021/acsbiomedchemau.2c00044","DOIUrl":null,"url":null,"abstract":"<p >β-lactamase production with vast catalytic divergence in the pathogenic strain limits the antibiotic spectrum in the clinical environment. Class A carbapenemase shares significant sequence similarities, structural features, and common catalytic mechanisms although their resistance spectrum differs from class A β-lactamase in carbapenem and monobactam hydrolysis. In other words, it limited the antibiotic treatment option against infection, causing carbapenemase-producing superbugs. Ftu-1 is a class A β-lactamase expressed by the <i>Francisella tularensis</i> strain, a potent causative organism of tularemia. The chromosomally encoded class A β-lactamase shares two conserved cysteine residues, a common characteristic of a carbapenemase, and a distinctive class in the phylogenetic tree. Complete biochemical and biophysical characterization of the enzyme was performed to understand the overall stability and environmental requirements to perform optimally. To comprehend the enzyme–drug interaction and its profile toward various chemistries of β-lactam and β-lactamase inhibitors, comprehensive kinetic and thermodynamic analyses were conducted using various β-lactam drugs. The dynamic property of Ftu-1 β-lactamase was also predicted using molecular dynamics (MD) simulation to compare its loop flexibility and ligand binding with other related class A β-lactamases. Overall, this study fosters a comprehensive understanding of Ftu-1, proposed to be an intermediate class by characterizing its kinetic profiling, stability by biochemical and biophysical methodologies, and susceptibility profiling. This understanding would be beneficial for the design of new-generation therapeutics.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"3 2","pages":"174–188"},"PeriodicalIF":3.8000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.2c00044","citationCount":"0","resultStr":"{\"title\":\"Characterization of a Class A β-Lactamase from Francisella tularensis (Ftu-1) Belonging to a Unique Subclass toward Understanding AMR\",\"authors\":\"Sourya Bhattacharya, Vivek Junghare, Mousumi Hazra, Niteesh Kumar Pandey, Abirlal Mukherjee, Kunal Dhankhar, Neeladrisingha Das, Partha Roy, Ramesh Chandra Dubey and Saugata Hazra*, \",\"doi\":\"10.1021/acsbiomedchemau.2c00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >β-lactamase production with vast catalytic divergence in the pathogenic strain limits the antibiotic spectrum in the clinical environment. Class A carbapenemase shares significant sequence similarities, structural features, and common catalytic mechanisms although their resistance spectrum differs from class A β-lactamase in carbapenem and monobactam hydrolysis. In other words, it limited the antibiotic treatment option against infection, causing carbapenemase-producing superbugs. Ftu-1 is a class A β-lactamase expressed by the <i>Francisella tularensis</i> strain, a potent causative organism of tularemia. The chromosomally encoded class A β-lactamase shares two conserved cysteine residues, a common characteristic of a carbapenemase, and a distinctive class in the phylogenetic tree. Complete biochemical and biophysical characterization of the enzyme was performed to understand the overall stability and environmental requirements to perform optimally. To comprehend the enzyme–drug interaction and its profile toward various chemistries of β-lactam and β-lactamase inhibitors, comprehensive kinetic and thermodynamic analyses were conducted using various β-lactam drugs. The dynamic property of Ftu-1 β-lactamase was also predicted using molecular dynamics (MD) simulation to compare its loop flexibility and ligand binding with other related class A β-lactamases. Overall, this study fosters a comprehensive understanding of Ftu-1, proposed to be an intermediate class by characterizing its kinetic profiling, stability by biochemical and biophysical methodologies, and susceptibility profiling. This understanding would be beneficial for the design of new-generation therapeutics.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"3 2\",\"pages\":\"174–188\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.2c00044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Characterization of a Class A β-Lactamase from Francisella tularensis (Ftu-1) Belonging to a Unique Subclass toward Understanding AMR
β-lactamase production with vast catalytic divergence in the pathogenic strain limits the antibiotic spectrum in the clinical environment. Class A carbapenemase shares significant sequence similarities, structural features, and common catalytic mechanisms although their resistance spectrum differs from class A β-lactamase in carbapenem and monobactam hydrolysis. In other words, it limited the antibiotic treatment option against infection, causing carbapenemase-producing superbugs. Ftu-1 is a class A β-lactamase expressed by the Francisella tularensis strain, a potent causative organism of tularemia. The chromosomally encoded class A β-lactamase shares two conserved cysteine residues, a common characteristic of a carbapenemase, and a distinctive class in the phylogenetic tree. Complete biochemical and biophysical characterization of the enzyme was performed to understand the overall stability and environmental requirements to perform optimally. To comprehend the enzyme–drug interaction and its profile toward various chemistries of β-lactam and β-lactamase inhibitors, comprehensive kinetic and thermodynamic analyses were conducted using various β-lactam drugs. The dynamic property of Ftu-1 β-lactamase was also predicted using molecular dynamics (MD) simulation to compare its loop flexibility and ligand binding with other related class A β-lactamases. Overall, this study fosters a comprehensive understanding of Ftu-1, proposed to be an intermediate class by characterizing its kinetic profiling, stability by biochemical and biophysical methodologies, and susceptibility profiling. This understanding would be beneficial for the design of new-generation therapeutics.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.