Brooke N. Livesay, Jurgen G. Schmidt, Robert F. Williams, Brennan S. Billow* and Aaron M. Tondreau*,
{"title":"[(PNP)Mn(CO)2]与有机磷酸盐的反应性","authors":"Brooke N. Livesay, Jurgen G. Schmidt, Robert F. Williams, Brennan S. Billow* and Aaron M. Tondreau*, ","doi":"10.1021/acsorginorgau.3c00003","DOIUrl":null,"url":null,"abstract":"<p >Organophosphorus nerve agents (OPAs) are a toxic class of synthetic compounds that cause adverse effects with many biological systems. Development of methods for environmental remediation and passivation has been ongoing for years. However, little progress has been made in therapeutic development for exposure victims. Given the postexposure behavior of OPA materials in enzymes such as acetylcholinesterase (AChE), development of electrophilic compounds as therapeutics may be more beneficial than the currently employed nucleophilic countermeasures. In this report, we present our studies with an electrophilic, 16-electron manganese complex (<sup><i>i</i>Pr</sup>PNP)Mn(CO)<sub>2</sub> (<b>1</b>) and the nucleophilic hydroxide derivative (<sup><i>i</i>Pr</sup>PN<sup>H</sup>P)Mn(CO)<sub>2</sub>(OH) (<b>2</b>). The reactivity of <b>1</b> with phosphorus acids and the reactivity of <b>2</b> with the P–F bond of diisopropylfluorophosphate (DIPF) were studied. The role of water in both nucleophilic and electrophilic reactivity was investigated with the use of <sup>17</sup>O-labeled water. Promising results arising from reactions of both <b>1</b> and <b>2</b> with organophosphorus substrates are reported.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00003","citationCount":"0","resultStr":"{\"title\":\"Reactivity of [(PNP)Mn(CO)2] with Organophosphates\",\"authors\":\"Brooke N. Livesay, Jurgen G. Schmidt, Robert F. Williams, Brennan S. Billow* and Aaron M. Tondreau*, \",\"doi\":\"10.1021/acsorginorgau.3c00003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organophosphorus nerve agents (OPAs) are a toxic class of synthetic compounds that cause adverse effects with many biological systems. Development of methods for environmental remediation and passivation has been ongoing for years. However, little progress has been made in therapeutic development for exposure victims. Given the postexposure behavior of OPA materials in enzymes such as acetylcholinesterase (AChE), development of electrophilic compounds as therapeutics may be more beneficial than the currently employed nucleophilic countermeasures. In this report, we present our studies with an electrophilic, 16-electron manganese complex (<sup><i>i</i>Pr</sup>PNP)Mn(CO)<sub>2</sub> (<b>1</b>) and the nucleophilic hydroxide derivative (<sup><i>i</i>Pr</sup>PN<sup>H</sup>P)Mn(CO)<sub>2</sub>(OH) (<b>2</b>). The reactivity of <b>1</b> with phosphorus acids and the reactivity of <b>2</b> with the P–F bond of diisopropylfluorophosphate (DIPF) were studied. The role of water in both nucleophilic and electrophilic reactivity was investigated with the use of <sup>17</sup>O-labeled water. Promising results arising from reactions of both <b>1</b> and <b>2</b> with organophosphorus substrates are reported.</p>\",\"PeriodicalId\":29797,\"journal\":{\"name\":\"ACS Organic & Inorganic Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Organic & Inorganic Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsorginorgau.3c00003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsorginorgau.3c00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Reactivity of [(PNP)Mn(CO)2] with Organophosphates
Organophosphorus nerve agents (OPAs) are a toxic class of synthetic compounds that cause adverse effects with many biological systems. Development of methods for environmental remediation and passivation has been ongoing for years. However, little progress has been made in therapeutic development for exposure victims. Given the postexposure behavior of OPA materials in enzymes such as acetylcholinesterase (AChE), development of electrophilic compounds as therapeutics may be more beneficial than the currently employed nucleophilic countermeasures. In this report, we present our studies with an electrophilic, 16-electron manganese complex (iPrPNP)Mn(CO)2 (1) and the nucleophilic hydroxide derivative (iPrPNHP)Mn(CO)2(OH) (2). The reactivity of 1 with phosphorus acids and the reactivity of 2 with the P–F bond of diisopropylfluorophosphate (DIPF) were studied. The role of water in both nucleophilic and electrophilic reactivity was investigated with the use of 17O-labeled water. Promising results arising from reactions of both 1 and 2 with organophosphorus substrates are reported.
期刊介绍:
ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.