Telmo O. Paiva, Albertus Viljoen, Thaina M. da Costa, Joan A. Geoghegan* and Yves F. Dufrêne*,
{"title":"金黄色葡萄球菌表面蛋白FnBPB与角膜粘连蛋白的相互作用涉及两个不同的,极强的键","authors":"Telmo O. Paiva, Albertus Viljoen, Thaina M. da Costa, Joan A. Geoghegan* and Yves F. Dufrêne*, ","doi":"10.1021/acsnanoscienceau.2c00036","DOIUrl":null,"url":null,"abstract":"<p >Attachment of <i>Staphylococcus aureus</i> to human skin corneocyte cells plays a critical role in exacerbating the severity of atopic dermatitis (AD). Pathogen-skin adhesion is mediated by bacterial cell-surface proteins called adhesins, including fibronectin-binding protein B (FnBPB). FnBPB binds to corneodesmosin (CDSN), a glycoprotein exposed on AD patient corneocytes. Using single-molecule experiments, we demonstrate that CDSN binding by FnBPB relies on a sophisticated two-site mechanism. Both sites form extremely strong bonds with binding forces of ∼1 and ∼2.5 nN albeit with faster dissociation rates than those reported for homologues of the adhesin. This previously unidentified two-binding site interaction in FnBPB illustrates its remarkable variety of adhesive functions and is of biological significance as the high strength and short bond lifetime will favor efficient skin colonization by the pathogen.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00036","citationCount":"2","resultStr":"{\"title\":\"Interaction of the Staphylococcus aureus Surface Protein FnBPB with Corneodesmosin Involves Two Distinct, Extremely Strong Bonds\",\"authors\":\"Telmo O. Paiva, Albertus Viljoen, Thaina M. da Costa, Joan A. Geoghegan* and Yves F. Dufrêne*, \",\"doi\":\"10.1021/acsnanoscienceau.2c00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Attachment of <i>Staphylococcus aureus</i> to human skin corneocyte cells plays a critical role in exacerbating the severity of atopic dermatitis (AD). Pathogen-skin adhesion is mediated by bacterial cell-surface proteins called adhesins, including fibronectin-binding protein B (FnBPB). FnBPB binds to corneodesmosin (CDSN), a glycoprotein exposed on AD patient corneocytes. Using single-molecule experiments, we demonstrate that CDSN binding by FnBPB relies on a sophisticated two-site mechanism. Both sites form extremely strong bonds with binding forces of ∼1 and ∼2.5 nN albeit with faster dissociation rates than those reported for homologues of the adhesin. This previously unidentified two-binding site interaction in FnBPB illustrates its remarkable variety of adhesive functions and is of biological significance as the high strength and short bond lifetime will favor efficient skin colonization by the pathogen.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00036\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Interaction of the Staphylococcus aureus Surface Protein FnBPB with Corneodesmosin Involves Two Distinct, Extremely Strong Bonds
Attachment of Staphylococcus aureus to human skin corneocyte cells plays a critical role in exacerbating the severity of atopic dermatitis (AD). Pathogen-skin adhesion is mediated by bacterial cell-surface proteins called adhesins, including fibronectin-binding protein B (FnBPB). FnBPB binds to corneodesmosin (CDSN), a glycoprotein exposed on AD patient corneocytes. Using single-molecule experiments, we demonstrate that CDSN binding by FnBPB relies on a sophisticated two-site mechanism. Both sites form extremely strong bonds with binding forces of ∼1 and ∼2.5 nN albeit with faster dissociation rates than those reported for homologues of the adhesin. This previously unidentified two-binding site interaction in FnBPB illustrates its remarkable variety of adhesive functions and is of biological significance as the high strength and short bond lifetime will favor efficient skin colonization by the pathogen.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.