A. S. Gorshkov, L. V. Sineva, K. O. Gryaznov, E. Yu. Asalieva, V. Z. Mordkovich
{"title":"含钴沸石催化剂在费托合成反应器中的失活与再生","authors":"A. S. Gorshkov, L. V. Sineva, K. O. Gryaznov, E. Yu. Asalieva, V. Z. Mordkovich","doi":"10.1134/S207005042302006X","DOIUrl":null,"url":null,"abstract":"<p>Results from the prolonged tests of zeolite-containing cobalt catalysts for Fischer–Tropsch synthesis in reactor tubes comparable in size to those used in industrial reactors. During 3000 hours on stream catalyst activity was decreased by 13%. It is shown that the main reasons for zeolite-containing cobalt catalyst deactivation are agglomeration of cobalt clusters and carbon deposition on the catalyst surface. The authors propose one method of reducing the catalyst deactivation rate and two methods of regenerating it. It is shown that the oxidative regeneration treatment of zeolite-containing cobalt catalysts allows to recover 98% of the initial activity.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 2","pages":"152 - 164"},"PeriodicalIF":0.7000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deactivation and Regeneration of a Zeolite-Containing Cobalt Catalyst in a Fisher–Tropsch Synthesis Reactor\",\"authors\":\"A. S. Gorshkov, L. V. Sineva, K. O. Gryaznov, E. Yu. Asalieva, V. Z. Mordkovich\",\"doi\":\"10.1134/S207005042302006X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Results from the prolonged tests of zeolite-containing cobalt catalysts for Fischer–Tropsch synthesis in reactor tubes comparable in size to those used in industrial reactors. During 3000 hours on stream catalyst activity was decreased by 13%. It is shown that the main reasons for zeolite-containing cobalt catalyst deactivation are agglomeration of cobalt clusters and carbon deposition on the catalyst surface. The authors propose one method of reducing the catalyst deactivation rate and two methods of regenerating it. It is shown that the oxidative regeneration treatment of zeolite-containing cobalt catalysts allows to recover 98% of the initial activity.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"15 2\",\"pages\":\"152 - 164\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S207005042302006X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S207005042302006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Deactivation and Regeneration of a Zeolite-Containing Cobalt Catalyst in a Fisher–Tropsch Synthesis Reactor
Results from the prolonged tests of zeolite-containing cobalt catalysts for Fischer–Tropsch synthesis in reactor tubes comparable in size to those used in industrial reactors. During 3000 hours on stream catalyst activity was decreased by 13%. It is shown that the main reasons for zeolite-containing cobalt catalyst deactivation are agglomeration of cobalt clusters and carbon deposition on the catalyst surface. The authors propose one method of reducing the catalyst deactivation rate and two methods of regenerating it. It is shown that the oxidative regeneration treatment of zeolite-containing cobalt catalysts allows to recover 98% of the initial activity.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.