Jian Chen , Shiyun Li , Li Lin , Jiaze Wan , Zuoyong Li
{"title":"基于结构特征的无参考模糊图像质量评估方法","authors":"Jian Chen , Shiyun Li , Li Lin , Jiaze Wan , Zuoyong Li","doi":"10.1016/j.image.2023.117008","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span><span><span>The deep structure in the image contains certain information of the image, which is helpful to perceive the quality of the image. Inspired by deep level image features extracted via </span>deep learning<span> methods, we propose a no-reference blurred image quality evaluation model based on the structure of structure features. In spatial domain, the novel weighted local binary patterns are proposed which leverage maximum local variation maps to extract structural features from multi-resolution images. In </span></span>spectral domain, </span>gradient information<span> of multi-scale Log-Gabor filtered images is extracted as the structure of structure features, and combined with entropy features. Then, the features extracted from both domains are fused to form a quality perception feature vector and mapped into the quality score via support vector regression (SVR). Experiments are conducted to evaluate the performance of the proposed method on various </span></span>IQA databases, including the LIVE, CSIQ, TID2008, TID2013, CID2013, CLIVE, and BID. The experimental results show that compared with some state-of-the-art methods, our proposed method achieves better evaluation results and is more in line with the </span>human visual system<span>. The source code will be released at </span></span><span>https://github.com/JamesC0321/s2s_features/</span><svg><path></path></svg>.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117008"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No-reference blurred image quality assessment method based on structure of structure features\",\"authors\":\"Jian Chen , Shiyun Li , Li Lin , Jiaze Wan , Zuoyong Li\",\"doi\":\"10.1016/j.image.2023.117008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span><span><span><span>The deep structure in the image contains certain information of the image, which is helpful to perceive the quality of the image. Inspired by deep level image features extracted via </span>deep learning<span> methods, we propose a no-reference blurred image quality evaluation model based on the structure of structure features. In spatial domain, the novel weighted local binary patterns are proposed which leverage maximum local variation maps to extract structural features from multi-resolution images. In </span></span>spectral domain, </span>gradient information<span> of multi-scale Log-Gabor filtered images is extracted as the structure of structure features, and combined with entropy features. Then, the features extracted from both domains are fused to form a quality perception feature vector and mapped into the quality score via support vector regression (SVR). Experiments are conducted to evaluate the performance of the proposed method on various </span></span>IQA databases, including the LIVE, CSIQ, TID2008, TID2013, CID2013, CLIVE, and BID. The experimental results show that compared with some state-of-the-art methods, our proposed method achieves better evaluation results and is more in line with the </span>human visual system<span>. The source code will be released at </span></span><span>https://github.com/JamesC0321/s2s_features/</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"118 \",\"pages\":\"Article 117008\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596523000905\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523000905","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
No-reference blurred image quality assessment method based on structure of structure features
The deep structure in the image contains certain information of the image, which is helpful to perceive the quality of the image. Inspired by deep level image features extracted via deep learning methods, we propose a no-reference blurred image quality evaluation model based on the structure of structure features. In spatial domain, the novel weighted local binary patterns are proposed which leverage maximum local variation maps to extract structural features from multi-resolution images. In spectral domain, gradient information of multi-scale Log-Gabor filtered images is extracted as the structure of structure features, and combined with entropy features. Then, the features extracted from both domains are fused to form a quality perception feature vector and mapped into the quality score via support vector regression (SVR). Experiments are conducted to evaluate the performance of the proposed method on various IQA databases, including the LIVE, CSIQ, TID2008, TID2013, CID2013, CLIVE, and BID. The experimental results show that compared with some state-of-the-art methods, our proposed method achieves better evaluation results and is more in line with the human visual system. The source code will be released at https://github.com/JamesC0321/s2s_features/.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.