当量子退火遇上多任务处理:潜力、挑战与机遇

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS Array Pub Date : 2023-03-01 DOI:10.1016/j.array.2023.100282
Tian Huang , Yongxin Zhu , Rick Siow Mong Goh , Tao Luo
{"title":"当量子退火遇上多任务处理:潜力、挑战与机遇","authors":"Tian Huang ,&nbsp;Yongxin Zhu ,&nbsp;Rick Siow Mong Goh ,&nbsp;Tao Luo","doi":"10.1016/j.array.2023.100282","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum computers have provided a promising tool for tackling NP hard problems. However, most of the existing work on quantum annealers assumes exclusive access to all resources available in a quantum annealer. This is not resource efficient if a task consumes only a small part of an annealer and leaves the rest wasted. We ask if we can run multiple tasks in parallel or concurrently on an annealer, just like the multitasking capability of a classical general-purpose processor. By far, multitasking is not natively supported by any of the existing annealers. In this paper, we explore Multitasking in Quantum Annealer (QAMT) by identifying the parallelism in a quantum annealer from the aspect of space and time. Based on commercialised quantum annealers from D-Wave, we propose a realisation scheme for QAMT, which packs multiple tasks into a quantum machine instruction (QMI) and uses predefined sampling time to emulate task preemption. We enumerate a few scheduling algorithms that match well with QAMT and discuss the challenges in QAMT. To demonstrate the potential of QAMT, we simulate a quantum annealing system, implement a demo QAMT scheduling algorithm, and evaluate the algorithm. Experimental results suggest that there is great potential in multitasking in quantum annealing.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When quantum annealing meets multitasking: Potentials, challenges and opportunities\",\"authors\":\"Tian Huang ,&nbsp;Yongxin Zhu ,&nbsp;Rick Siow Mong Goh ,&nbsp;Tao Luo\",\"doi\":\"10.1016/j.array.2023.100282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum computers have provided a promising tool for tackling NP hard problems. However, most of the existing work on quantum annealers assumes exclusive access to all resources available in a quantum annealer. This is not resource efficient if a task consumes only a small part of an annealer and leaves the rest wasted. We ask if we can run multiple tasks in parallel or concurrently on an annealer, just like the multitasking capability of a classical general-purpose processor. By far, multitasking is not natively supported by any of the existing annealers. In this paper, we explore Multitasking in Quantum Annealer (QAMT) by identifying the parallelism in a quantum annealer from the aspect of space and time. Based on commercialised quantum annealers from D-Wave, we propose a realisation scheme for QAMT, which packs multiple tasks into a quantum machine instruction (QMI) and uses predefined sampling time to emulate task preemption. We enumerate a few scheduling algorithms that match well with QAMT and discuss the challenges in QAMT. To demonstrate the potential of QAMT, we simulate a quantum annealing system, implement a demo QAMT scheduling algorithm, and evaluate the algorithm. Experimental results suggest that there is great potential in multitasking in quantum annealing.</p></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005623000073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005623000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

量子计算机为解决NP困难问题提供了一个很有前途的工具。然而,大多数关于量子退火炉的现有工作都假设对量子退火炉中所有可用资源的独占访问。如果一个任务只消耗了退火炉的一小部分,而剩下的部分被浪费了,那么这就不是资源效率。我们询问是否可以在退火机上并行或并发地运行多个任务,就像经典通用处理器的多任务处理能力一样。到目前为止,任何现有的退火器都不支持多任务处理。本文通过从空间和时间的角度识别量子退火中的并行性,探讨了量子退火中的多任务处理问题。基于D-Wave的商用量子退火器,我们提出了一种QAMT的实现方案,该方案将多个任务打包到一个量子机器指令(QMI)中,并使用预定义的采样时间来模拟任务抢占。我们列举了几种与QAMT很匹配的调度算法,并讨论了QAMT中的挑战。为了证明QAMT的潜力,我们模拟了一个量子退火系统,实现了一个演示的QAMT调度算法,并对算法进行了评估。实验结果表明,多任务处理在量子退火中具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
When quantum annealing meets multitasking: Potentials, challenges and opportunities

Quantum computers have provided a promising tool for tackling NP hard problems. However, most of the existing work on quantum annealers assumes exclusive access to all resources available in a quantum annealer. This is not resource efficient if a task consumes only a small part of an annealer and leaves the rest wasted. We ask if we can run multiple tasks in parallel or concurrently on an annealer, just like the multitasking capability of a classical general-purpose processor. By far, multitasking is not natively supported by any of the existing annealers. In this paper, we explore Multitasking in Quantum Annealer (QAMT) by identifying the parallelism in a quantum annealer from the aspect of space and time. Based on commercialised quantum annealers from D-Wave, we propose a realisation scheme for QAMT, which packs multiple tasks into a quantum machine instruction (QMI) and uses predefined sampling time to emulate task preemption. We enumerate a few scheduling algorithms that match well with QAMT and discuss the challenges in QAMT. To demonstrate the potential of QAMT, we simulate a quantum annealing system, implement a demo QAMT scheduling algorithm, and evaluate the algorithm. Experimental results suggest that there is great potential in multitasking in quantum annealing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
期刊最新文献
Combining computational linguistics with sentence embedding to create a zero-shot NLIDB Development of automatic CNC machine with versatile applications in art, design, and engineering Dual-model approach for one-shot lithium-ion battery state of health sequence prediction Maximizing influence via link prediction in evolving networks Assessing generalizability of Deep Reinforcement Learning algorithms for Automated Vulnerability Assessment and Penetration Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1