Shandana Ali , Waheed Ullah , Ahmad Faris Seman Kamarulzaman , Maizom Hassan , Muhammad Rauf , Muhammad Nasir Khan Khattak , Farman Ullah Dawar
{"title":"在嗜水气单胞菌感染后,红唇Labeo rohita表皮粘液蛋白组学分析显示其蛋白含量存在差异","authors":"Shandana Ali , Waheed Ullah , Ahmad Faris Seman Kamarulzaman , Maizom Hassan , Muhammad Rauf , Muhammad Nasir Khan Khattak , Farman Ullah Dawar","doi":"10.1016/j.fsirep.2023.100115","DOIUrl":null,"url":null,"abstract":"<div><p>We report the proteomic profile of Epidermal Mucus (EM) from <em>Labeo rohita</em> and identified the differentially abundant proteins (DAPs) against <em>Aeromonas hydrophila</em> infection through label-free liquid chromatography-mass spectrometry (LC-MS/MS). Using discovery-based proteomics, a total of 2039 proteins were quantified in nontreated group and 1,328 proteins in the treated group, of which 114 were identified as DAPs in both the groups. Of the 114 DAPs, 68 proteins were upregulated and 46 proteins were downregulated in the treated group compared to nontreated group. Functional annotations of these DAPs shows their association with metabolism, cellular process, molecular process, cytoskeletal, stress, and particularly immune system. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Fisher's exact test between the two groups shows that most of the proteins were immune-related, which were significantly associated with the proteasome, phagosome, and <em>Salmonella</em> infection pathways. Overall, this study shows a basic and primary way for further functional research of the involvement of vitellogenin 2, alpha-2-macroglobulin-like protein, toll-like receptors (TLR-13), calpain, keratin-like proteins, and heat shock proteins against bacterial infection. Nonetheless, this first-ever comprehensive report of a proteomic sketch of EM from <em>L. rohita</em> after <em>A. hydrophila</em> infection provides systematic protein information to broadly understand the biological role of fish EM against bacterial infection.</p></div>","PeriodicalId":73029,"journal":{"name":"Fish and shellfish immunology reports","volume":"5 ","pages":"Article 100115"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Proteomic profile of epidermal mucus from Labeo rohita reveals differentially abundant proteins after Aeromonas hydrophila infection\",\"authors\":\"Shandana Ali , Waheed Ullah , Ahmad Faris Seman Kamarulzaman , Maizom Hassan , Muhammad Rauf , Muhammad Nasir Khan Khattak , Farman Ullah Dawar\",\"doi\":\"10.1016/j.fsirep.2023.100115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report the proteomic profile of Epidermal Mucus (EM) from <em>Labeo rohita</em> and identified the differentially abundant proteins (DAPs) against <em>Aeromonas hydrophila</em> infection through label-free liquid chromatography-mass spectrometry (LC-MS/MS). Using discovery-based proteomics, a total of 2039 proteins were quantified in nontreated group and 1,328 proteins in the treated group, of which 114 were identified as DAPs in both the groups. Of the 114 DAPs, 68 proteins were upregulated and 46 proteins were downregulated in the treated group compared to nontreated group. Functional annotations of these DAPs shows their association with metabolism, cellular process, molecular process, cytoskeletal, stress, and particularly immune system. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Fisher's exact test between the two groups shows that most of the proteins were immune-related, which were significantly associated with the proteasome, phagosome, and <em>Salmonella</em> infection pathways. Overall, this study shows a basic and primary way for further functional research of the involvement of vitellogenin 2, alpha-2-macroglobulin-like protein, toll-like receptors (TLR-13), calpain, keratin-like proteins, and heat shock proteins against bacterial infection. Nonetheless, this first-ever comprehensive report of a proteomic sketch of EM from <em>L. rohita</em> after <em>A. hydrophila</em> infection provides systematic protein information to broadly understand the biological role of fish EM against bacterial infection.</p></div>\",\"PeriodicalId\":73029,\"journal\":{\"name\":\"Fish and shellfish immunology reports\",\"volume\":\"5 \",\"pages\":\"Article 100115\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish and shellfish immunology reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266701192300035X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and shellfish immunology reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266701192300035X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Proteomic profile of epidermal mucus from Labeo rohita reveals differentially abundant proteins after Aeromonas hydrophila infection
We report the proteomic profile of Epidermal Mucus (EM) from Labeo rohita and identified the differentially abundant proteins (DAPs) against Aeromonas hydrophila infection through label-free liquid chromatography-mass spectrometry (LC-MS/MS). Using discovery-based proteomics, a total of 2039 proteins were quantified in nontreated group and 1,328 proteins in the treated group, of which 114 were identified as DAPs in both the groups. Of the 114 DAPs, 68 proteins were upregulated and 46 proteins were downregulated in the treated group compared to nontreated group. Functional annotations of these DAPs shows their association with metabolism, cellular process, molecular process, cytoskeletal, stress, and particularly immune system. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Fisher's exact test between the two groups shows that most of the proteins were immune-related, which were significantly associated with the proteasome, phagosome, and Salmonella infection pathways. Overall, this study shows a basic and primary way for further functional research of the involvement of vitellogenin 2, alpha-2-macroglobulin-like protein, toll-like receptors (TLR-13), calpain, keratin-like proteins, and heat shock proteins against bacterial infection. Nonetheless, this first-ever comprehensive report of a proteomic sketch of EM from L. rohita after A. hydrophila infection provides systematic protein information to broadly understand the biological role of fish EM against bacterial infection.