POBO:云微服务的安全和优化资源管理

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Performance Evaluation Pub Date : 2023-10-10 DOI:10.1016/j.peva.2023.102376
Hengquan Guo , Hongchen Cao , Jingzhu He, Xin Liu, Yuanming Shi
{"title":"POBO:云微服务的安全和优化资源管理","authors":"Hengquan Guo ,&nbsp;Hongchen Cao ,&nbsp;Jingzhu He,&nbsp;Xin Liu,&nbsp;Yuanming Shi","doi":"10.1016/j.peva.2023.102376","DOIUrl":null,"url":null,"abstract":"<div><p>Resource management in microservices<span> is challenging due to the uncertain latency–resource relationship, dynamic environment, and strict Service-Level Agreement (SLA) guarantees. This paper presents a Pessimistic and Optimistic Bayesian Optimization<span><span> framework, named POBO, for safe and optimal resource configuration for microservice applications. POBO leverages </span>Bayesian learning to estimate the uncertain latency–resource functions and combines primal–dual and penalty-based optimization to maximize resource efficiency while guaranteeing strict SLAs. We prove that POBO can achieve sublinear regret and SLA violation against the optimal resource configuration in hindsight. We have implemented a prototype of POBO and conducted extensive experiments on a real-world microservice application. Our results show that POBO can find the safe and optimal configuration efficiently, outperforming Kubernetes’ built-in auto-scaling module and the state-of-the-art algorithms.</span></span></p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"162 ","pages":"Article 102376"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POBO: Safe and optimal resource management for cloud microservices\",\"authors\":\"Hengquan Guo ,&nbsp;Hongchen Cao ,&nbsp;Jingzhu He,&nbsp;Xin Liu,&nbsp;Yuanming Shi\",\"doi\":\"10.1016/j.peva.2023.102376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Resource management in microservices<span> is challenging due to the uncertain latency–resource relationship, dynamic environment, and strict Service-Level Agreement (SLA) guarantees. This paper presents a Pessimistic and Optimistic Bayesian Optimization<span><span> framework, named POBO, for safe and optimal resource configuration for microservice applications. POBO leverages </span>Bayesian learning to estimate the uncertain latency–resource functions and combines primal–dual and penalty-based optimization to maximize resource efficiency while guaranteeing strict SLAs. We prove that POBO can achieve sublinear regret and SLA violation against the optimal resource configuration in hindsight. We have implemented a prototype of POBO and conducted extensive experiments on a real-world microservice application. Our results show that POBO can find the safe and optimal configuration efficiently, outperforming Kubernetes’ built-in auto-scaling module and the state-of-the-art algorithms.</span></span></p></div>\",\"PeriodicalId\":19964,\"journal\":{\"name\":\"Performance Evaluation\",\"volume\":\"162 \",\"pages\":\"Article 102376\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166531623000469\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531623000469","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

由于不确定的延迟-资源关系、动态环境和严格的服务水平协议(SLA)保证,微服务中的资源管理具有挑战性。本文提出了一种悲观和乐观贝叶斯优化框架,即POBO,用于微服务应用的安全优化资源配置。POBO利用贝叶斯学习来估计不确定的延迟资源函数,并结合原始对偶和基于惩罚的优化来最大化资源效率,同时保证严格的sla。事后证明POBO可以实现对最优资源配置的次线性后悔和SLA违反。我们已经实现了POBO的原型,并在一个真实的微服务应用程序上进行了大量的实验。我们的研究结果表明,POBO可以有效地找到安全和最佳配置,优于Kubernetes内置的自动缩放模块和最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POBO: Safe and optimal resource management for cloud microservices

Resource management in microservices is challenging due to the uncertain latency–resource relationship, dynamic environment, and strict Service-Level Agreement (SLA) guarantees. This paper presents a Pessimistic and Optimistic Bayesian Optimization framework, named POBO, for safe and optimal resource configuration for microservice applications. POBO leverages Bayesian learning to estimate the uncertain latency–resource functions and combines primal–dual and penalty-based optimization to maximize resource efficiency while guaranteeing strict SLAs. We prove that POBO can achieve sublinear regret and SLA violation against the optimal resource configuration in hindsight. We have implemented a prototype of POBO and conducted extensive experiments on a real-world microservice application. Our results show that POBO can find the safe and optimal configuration efficiently, outperforming Kubernetes’ built-in auto-scaling module and the state-of-the-art algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Performance Evaluation
Performance Evaluation 工程技术-计算机:理论方法
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
24 days
期刊介绍: Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions: -Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques -Provide new insights into the performance of computing and communication systems -Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools. More specifically, common application areas of interest include the performance of: -Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management) -System architecture, design and implementation -Cognitive radio -VANETs -Social networks and media -Energy efficient ICT -Energy harvesting -Data centers -Data centric networks -System reliability -System tuning and capacity planning -Wireless and sensor networks -Autonomic and self-organizing systems -Embedded systems -Network science
期刊最新文献
Analysis of a queue-length-dependent vacation queue with bulk service, N-policy, set-up time and cost optimization FedCust: Offloading hyperparameter customization for federated learning Trust your local scaler: A continuous, decentralized approach to autoscaling Enabling scalable and adaptive machine learning training via serverless computing on public cloud Symbolic state-space exploration meets statistical model checking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1