高维积分的随机素数-固定向量随机格算法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-08-02 DOI:10.1016/j.jco.2023.101785
Frances Y. Kuo , Dirk Nuyens , Laurence Wilkes
{"title":"高维积分的随机素数-固定向量随机格算法","authors":"Frances Y. Kuo ,&nbsp;Dirk Nuyens ,&nbsp;Laurence Wilkes","doi":"10.1016/j.jco.2023.101785","DOIUrl":null,"url":null,"abstract":"<div><p>We show that a very simple randomised algorithm for numerical integration can produce a near optimal rate of convergence for integrals of functions in the <em>d</em><span>-dimensional weighted Korobov space. This algorithm uses a lattice<span> rule with a fixed generating vector and the only random element is the choice of the number of function evaluations. For a given computational budget </span></span><em>n</em> of a maximum allowed number of function evaluations, we uniformly pick a prime <em>p</em> in the range <span><math><mi>n</mi><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mi>n</mi></math></span>. We show error bounds for the randomised error, which is defined as the worst case expected error, of the form <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>α</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>δ</mi></mrow></msup><mo>)</mo></math></span>, with <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span>, for a Korobov space with smoothness <span><math><mi>α</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and general weights. The implied constant in the bound is dimension-independent given the usual conditions on the weights. We present an algorithm that can construct suitable generating vectors <em>offline</em> ahead of time at cost <span><math><mi>O</mi><mo>(</mo><mi>d</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>/</mo><mi>ln</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> when the weight parameters defining the Korobov spaces are so-called product weights. For this case, numerical experiments confirm our theory that the new randomised algorithm achieves the near optimal rate of the randomised error.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random-prime–fixed-vector randomised lattice-based algorithm for high-dimensional integration\",\"authors\":\"Frances Y. Kuo ,&nbsp;Dirk Nuyens ,&nbsp;Laurence Wilkes\",\"doi\":\"10.1016/j.jco.2023.101785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that a very simple randomised algorithm for numerical integration can produce a near optimal rate of convergence for integrals of functions in the <em>d</em><span>-dimensional weighted Korobov space. This algorithm uses a lattice<span> rule with a fixed generating vector and the only random element is the choice of the number of function evaluations. For a given computational budget </span></span><em>n</em> of a maximum allowed number of function evaluations, we uniformly pick a prime <em>p</em> in the range <span><math><mi>n</mi><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mi>n</mi></math></span>. We show error bounds for the randomised error, which is defined as the worst case expected error, of the form <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>α</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>δ</mi></mrow></msup><mo>)</mo></math></span>, with <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span>, for a Korobov space with smoothness <span><math><mi>α</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and general weights. The implied constant in the bound is dimension-independent given the usual conditions on the weights. We present an algorithm that can construct suitable generating vectors <em>offline</em> ahead of time at cost <span><math><mi>O</mi><mo>(</mo><mi>d</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>/</mo><mi>ln</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> when the weight parameters defining the Korobov spaces are so-called product weights. For this case, numerical experiments confirm our theory that the new randomised algorithm achieves the near optimal rate of the randomised error.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000547\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000547","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一种非常简单的随机化数值积分算法可以为d维加权Korobov空间中的函数积分产生接近最优的收敛率。该算法使用具有固定生成向量的点阵规则,唯一的随机元素是函数求值次数的选择。对于给定的最大允许函数求值次数的计算预算n,我们统一地在n/2<p≤n的范围内选择一个素数p。对于光滑度为α>1/2和一般权值的Korobov空间,我们给出了随机化误差的误差界,它被定义为最坏情况下的期望误差,其形式为O(n−α - 1/2+δ), δ>0。在通常的权值条件下,界中的隐含常数是与维无关的。我们提出了一种算法,当定义Korobov空间的权重参数是所谓的积权重时,可以以O(dn4/ln n)的代价提前离线构建合适的生成向量。对于这种情况,数值实验证实了我们的理论,即新的随机化算法实现了接近最优的随机化错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Random-prime–fixed-vector randomised lattice-based algorithm for high-dimensional integration

We show that a very simple randomised algorithm for numerical integration can produce a near optimal rate of convergence for integrals of functions in the d-dimensional weighted Korobov space. This algorithm uses a lattice rule with a fixed generating vector and the only random element is the choice of the number of function evaluations. For a given computational budget n of a maximum allowed number of function evaluations, we uniformly pick a prime p in the range n/2<pn. We show error bounds for the randomised error, which is defined as the worst case expected error, of the form O(nα1/2+δ), with δ>0, for a Korobov space with smoothness α>1/2 and general weights. The implied constant in the bound is dimension-independent given the usual conditions on the weights. We present an algorithm that can construct suitable generating vectors offline ahead of time at cost O(dn4/lnn) when the weight parameters defining the Korobov spaces are so-called product weights. For this case, numerical experiments confirm our theory that the new randomised algorithm achieves the near optimal rate of the randomised error.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1