Kristopher Brown , Evan Patterson , Tyler Hanks , James Fairbanks
{"title":"计算范畴论重写","authors":"Kristopher Brown , Evan Patterson , Tyler Hanks , James Fairbanks","doi":"10.1016/j.jlamp.2023.100888","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate how category theory provides specifications that can efficiently be implemented via imperative algorithms and apply this to the field of graph transformation. By examples, we show how this paradigm of software development makes it easy to quickly write correct and performant code. We provide a modern implementation of graph rewriting techniques at the level of abstraction of finitely-presented <span><math><mi>C</mi></math></span>-sets and clarify the connections between <span><math><mi>C</mi></math></span><span>-sets and the typed graphs supported in existing rewriting software. We emphasize that our open-source library is extensible: by taking new categorical constructions (such as slice categories, structured cospans, and distributed graphs) and relating their limits and colimits to those of their underlying categories, users inherit efficient algorithms for pushout complements and (final) pullback complements. This allows one to perform double-, single-, and sesqui-pushout rewriting over a broad class of data structures. Graph transformation researchers, scientists, and engineers can then use this library to computationally manipulate rewriting systems and apply them to their domains of interest.</span></p></div>","PeriodicalId":48797,"journal":{"name":"Journal of Logical and Algebraic Methods in Programming","volume":"134 ","pages":"Article 100888"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational category-theoretic rewriting\",\"authors\":\"Kristopher Brown , Evan Patterson , Tyler Hanks , James Fairbanks\",\"doi\":\"10.1016/j.jlamp.2023.100888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We demonstrate how category theory provides specifications that can efficiently be implemented via imperative algorithms and apply this to the field of graph transformation. By examples, we show how this paradigm of software development makes it easy to quickly write correct and performant code. We provide a modern implementation of graph rewriting techniques at the level of abstraction of finitely-presented <span><math><mi>C</mi></math></span>-sets and clarify the connections between <span><math><mi>C</mi></math></span><span>-sets and the typed graphs supported in existing rewriting software. We emphasize that our open-source library is extensible: by taking new categorical constructions (such as slice categories, structured cospans, and distributed graphs) and relating their limits and colimits to those of their underlying categories, users inherit efficient algorithms for pushout complements and (final) pullback complements. This allows one to perform double-, single-, and sesqui-pushout rewriting over a broad class of data structures. Graph transformation researchers, scientists, and engineers can then use this library to computationally manipulate rewriting systems and apply them to their domains of interest.</span></p></div>\",\"PeriodicalId\":48797,\"journal\":{\"name\":\"Journal of Logical and Algebraic Methods in Programming\",\"volume\":\"134 \",\"pages\":\"Article 100888\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Logical and Algebraic Methods in Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352220823000421\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logical and Algebraic Methods in Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352220823000421","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We demonstrate how category theory provides specifications that can efficiently be implemented via imperative algorithms and apply this to the field of graph transformation. By examples, we show how this paradigm of software development makes it easy to quickly write correct and performant code. We provide a modern implementation of graph rewriting techniques at the level of abstraction of finitely-presented -sets and clarify the connections between -sets and the typed graphs supported in existing rewriting software. We emphasize that our open-source library is extensible: by taking new categorical constructions (such as slice categories, structured cospans, and distributed graphs) and relating their limits and colimits to those of their underlying categories, users inherit efficient algorithms for pushout complements and (final) pullback complements. This allows one to perform double-, single-, and sesqui-pushout rewriting over a broad class of data structures. Graph transformation researchers, scientists, and engineers can then use this library to computationally manipulate rewriting systems and apply them to their domains of interest.
期刊介绍:
The Journal of Logical and Algebraic Methods in Programming is an international journal whose aim is to publish high quality, original research papers, survey and review articles, tutorial expositions, and historical studies in the areas of logical and algebraic methods and techniques for guaranteeing correctness and performability of programs and in general of computing systems. All aspects will be covered, especially theory and foundations, implementation issues, and applications involving novel ideas.