Luca Cardelli , Giuseppe Squillace , Mirco Tribastone , Max Tschaikowski , Andrea Vandin
{"title":"通过近似等价的多项式微分方程的形式集总","authors":"Luca Cardelli , Giuseppe Squillace , Mirco Tribastone , Max Tschaikowski , Andrea Vandin","doi":"10.1016/j.jlamp.2023.100876","DOIUrl":null,"url":null,"abstract":"<div><p>It is well known that exact notions of model abstraction and reduction for dynamical systems may not be robust enough in practice because they are highly sensitive to the specific choice of parameters. In this paper we consider this problem for nonlinear ordinary differential equations (ODEs) with polynomial derivatives. We introduce a model reduction technique based on <em>approximate differential equivalence</em>, i.e., a partition of the set of ODE variables that performs an aggregation when the variables are governed by nearby derivatives. We develop algorithms to (i) compute the largest approximate differential equivalence; (ii) construct an approximately reduced model from the original one via an appropriate perturbation of the coefficients of the polynomials; and (iii) provide a formal certificate on the quality of the approximation as an error bound, computed as an over-approximation of the reachable set of the reduced model. Finally, we apply approximate differential equivalences to case studies on electric circuits, biological models, and polymerization reaction networks.</p></div>","PeriodicalId":48797,"journal":{"name":"Journal of Logical and Algebraic Methods in Programming","volume":"134 ","pages":"Article 100876"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formal lumping of polynomial differential equations through approximate equivalences\",\"authors\":\"Luca Cardelli , Giuseppe Squillace , Mirco Tribastone , Max Tschaikowski , Andrea Vandin\",\"doi\":\"10.1016/j.jlamp.2023.100876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well known that exact notions of model abstraction and reduction for dynamical systems may not be robust enough in practice because they are highly sensitive to the specific choice of parameters. In this paper we consider this problem for nonlinear ordinary differential equations (ODEs) with polynomial derivatives. We introduce a model reduction technique based on <em>approximate differential equivalence</em>, i.e., a partition of the set of ODE variables that performs an aggregation when the variables are governed by nearby derivatives. We develop algorithms to (i) compute the largest approximate differential equivalence; (ii) construct an approximately reduced model from the original one via an appropriate perturbation of the coefficients of the polynomials; and (iii) provide a formal certificate on the quality of the approximation as an error bound, computed as an over-approximation of the reachable set of the reduced model. Finally, we apply approximate differential equivalences to case studies on electric circuits, biological models, and polymerization reaction networks.</p></div>\",\"PeriodicalId\":48797,\"journal\":{\"name\":\"Journal of Logical and Algebraic Methods in Programming\",\"volume\":\"134 \",\"pages\":\"Article 100876\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Logical and Algebraic Methods in Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352220823000305\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logical and Algebraic Methods in Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352220823000305","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Formal lumping of polynomial differential equations through approximate equivalences
It is well known that exact notions of model abstraction and reduction for dynamical systems may not be robust enough in practice because they are highly sensitive to the specific choice of parameters. In this paper we consider this problem for nonlinear ordinary differential equations (ODEs) with polynomial derivatives. We introduce a model reduction technique based on approximate differential equivalence, i.e., a partition of the set of ODE variables that performs an aggregation when the variables are governed by nearby derivatives. We develop algorithms to (i) compute the largest approximate differential equivalence; (ii) construct an approximately reduced model from the original one via an appropriate perturbation of the coefficients of the polynomials; and (iii) provide a formal certificate on the quality of the approximation as an error bound, computed as an over-approximation of the reachable set of the reduced model. Finally, we apply approximate differential equivalences to case studies on electric circuits, biological models, and polymerization reaction networks.
期刊介绍:
The Journal of Logical and Algebraic Methods in Programming is an international journal whose aim is to publish high quality, original research papers, survey and review articles, tutorial expositions, and historical studies in the areas of logical and algebraic methods and techniques for guaranteeing correctness and performability of programs and in general of computing systems. All aspects will be covered, especially theory and foundations, implementation issues, and applications involving novel ideas.