基于惊喜的H.265/HEVC编解码器感知量化JND估计

IF 3.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing-Image Communication Pub Date : 2023-10-01 DOI:10.1016/j.image.2023.117019
Hongkui Wang , Li Yu , Hailang Yang , Haifeng Xu , Haibing Yin , Guangtao Zhai , Tianzong Li , Zhuo Kuang
{"title":"基于惊喜的H.265/HEVC编解码器感知量化JND估计","authors":"Hongkui Wang ,&nbsp;Li Yu ,&nbsp;Hailang Yang ,&nbsp;Haifeng Xu ,&nbsp;Haibing Yin ,&nbsp;Guangtao Zhai ,&nbsp;Tianzong Li ,&nbsp;Zhuo Kuang","doi":"10.1016/j.image.2023.117019","DOIUrl":null,"url":null,"abstract":"<div><p><span>Just noticeable distortion (JND), reflecting the perceptual redundancy directly, has been widely used in image and video compression. However, the </span>human visual system<span><span> (HVS) is extremely complex and the visual signal processing has not been fully understood, which result in existing JND models are not accurate enough and the bitrate saving of JND-based perceptual compression schemes<span> is limited. This paper presents a novel pixel-based JND model for videos and a JND-based perceptual quantization scheme for HEVC codecs. In particular, positive and negative perception effects of the inter-frame difference and the motion information are analyzed and measured with an information-theoretic approach. Then, a surprise-based JND model is developed for perceptual video coding (PVC). In our PVC scheme, the frame-level perceptual quantization parameter (QP) is derived on the premise that the coding distortion is infinitely close to the estimated JND threshold. On the basis of the frame-level perceptual QP, we determine the perceptual QP for each coding unit through a perceptual adjustment function to achieve better </span></span>perceptual quality. Experimental results indicate that the proposed JND model outperforms existing models significantly, the proposed perceptual quantization scheme improves video compression efficiency with better perceptual quality and lower coding complexity.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117019"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surprise-based JND estimation for perceptual quantization in H.265/HEVC codecs\",\"authors\":\"Hongkui Wang ,&nbsp;Li Yu ,&nbsp;Hailang Yang ,&nbsp;Haifeng Xu ,&nbsp;Haibing Yin ,&nbsp;Guangtao Zhai ,&nbsp;Tianzong Li ,&nbsp;Zhuo Kuang\",\"doi\":\"10.1016/j.image.2023.117019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Just noticeable distortion (JND), reflecting the perceptual redundancy directly, has been widely used in image and video compression. However, the </span>human visual system<span><span> (HVS) is extremely complex and the visual signal processing has not been fully understood, which result in existing JND models are not accurate enough and the bitrate saving of JND-based perceptual compression schemes<span> is limited. This paper presents a novel pixel-based JND model for videos and a JND-based perceptual quantization scheme for HEVC codecs. In particular, positive and negative perception effects of the inter-frame difference and the motion information are analyzed and measured with an information-theoretic approach. Then, a surprise-based JND model is developed for perceptual video coding (PVC). In our PVC scheme, the frame-level perceptual quantization parameter (QP) is derived on the premise that the coding distortion is infinitely close to the estimated JND threshold. On the basis of the frame-level perceptual QP, we determine the perceptual QP for each coding unit through a perceptual adjustment function to achieve better </span></span>perceptual quality. Experimental results indicate that the proposed JND model outperforms existing models significantly, the proposed perceptual quantization scheme improves video compression efficiency with better perceptual quality and lower coding complexity.</span></p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"118 \",\"pages\":\"Article 117019\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596523001017\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523001017","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

刚显失真(JND)是一种直接反映感知冗余的方法,在图像和视频压缩中得到了广泛的应用。然而,人类视觉系统极其复杂,对视觉信号的处理还没有完全了解,这导致现有的JND模型不够精确,并且基于JND的感知压缩方案的比特率节省有限。本文提出了一种新的基于像素的视频JND模型和一种基于JND的HEVC编解码器感知量化方案。特别地,用信息论的方法分析和测量了帧间差分和运动信息的积极和消极感知效应。在此基础上,提出了一种基于惊奇度的感知视频编码JND模型。在我们的PVC方案中,帧级感知量化参数(QP)是在编码失真无限接近估计的JND阈值的前提下导出的。在帧级感知QP的基础上,通过感知调节函数确定每个编码单元的感知QP,以获得更好的感知质量。实验结果表明,所提出的JND模型明显优于现有的模型,所提出的感知量化方案以更好的感知质量和更低的编码复杂度提高了视频压缩效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surprise-based JND estimation for perceptual quantization in H.265/HEVC codecs

Just noticeable distortion (JND), reflecting the perceptual redundancy directly, has been widely used in image and video compression. However, the human visual system (HVS) is extremely complex and the visual signal processing has not been fully understood, which result in existing JND models are not accurate enough and the bitrate saving of JND-based perceptual compression schemes is limited. This paper presents a novel pixel-based JND model for videos and a JND-based perceptual quantization scheme for HEVC codecs. In particular, positive and negative perception effects of the inter-frame difference and the motion information are analyzed and measured with an information-theoretic approach. Then, a surprise-based JND model is developed for perceptual video coding (PVC). In our PVC scheme, the frame-level perceptual quantization parameter (QP) is derived on the premise that the coding distortion is infinitely close to the estimated JND threshold. On the basis of the frame-level perceptual QP, we determine the perceptual QP for each coding unit through a perceptual adjustment function to achieve better perceptual quality. Experimental results indicate that the proposed JND model outperforms existing models significantly, the proposed perceptual quantization scheme improves video compression efficiency with better perceptual quality and lower coding complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing-Image Communication
Signal Processing-Image Communication 工程技术-工程:电子与电气
CiteScore
8.40
自引率
2.90%
发文量
138
审稿时长
5.2 months
期刊介绍: Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following: To present a forum for the advancement of theory and practice of image communication. To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems. To contribute to a rapid information exchange between the industrial and academic environments. The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world. Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments. Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.
期刊最新文献
SES-ReNet: Lightweight deep learning model for human detection in hazy weather conditions HOI-V: One-stage human-object interaction detection based on multi-feature fusion in videos Text in the dark: Extremely low-light text image enhancement High efficiency deep image compression via channel-wise scale adaptive latent representation learning Double supervision for scene text detection and recognition based on BMINet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1