Zhigang Hao , Wolfgang Mayer , Jingbo Xia , Guoliang Li , Li Qin , Zaiwen Feng
{"title":"本体对齐与语义和结构嵌入","authors":"Zhigang Hao , Wolfgang Mayer , Jingbo Xia , Guoliang Li , Li Qin , Zaiwen Feng","doi":"10.1016/j.websem.2023.100798","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Ontology alignment is essential for data integration and interoperability across multiple applications across diverse disciplines. In recent decades, significant advancements have been made in the development of advanced methods and systems for ontology alignment. Empirical results have suggested that </span>ontological semantics can be effectively employed to enhance the alignment process. Besides, structural information is crucial for ontology alignment as it reflects the relations among adjacent concepts in the ontology. Previous works are mainly based on external lexicon and </span>predefined rules<span> based on ontological structure<span>. Recently, deep learning has imposed positive impacts on ontology alignment and obtained substantial improvement.</span></span></p><p><span>This paper proposes a new method based on ontology embedding incorporating the semantic and structural features. It utilizes the distance between the embedding of two ontological concepts to be aligned as the criterion for alignment. The proposed method is used to align two widely used food ontologies and three Chinese food classification ontologies. The experimental results show that our method enhances the performance compared to several state-of-the-art alignment systems, demonstrating the importance of learning semantic representation and structural representation. Furthermore, the proposed method is evaluated on several different tracks of the Ontology Alignment Evaluation Initiative (OAEI), and experimental results show that our method outperforms other baselines in effectiveness. The data and code can be obtained from: </span><span>https://github.com/haozhigang1111/Ontology-Alignment.git</span><svg><path></path></svg>.</p></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"78 ","pages":"Article 100798"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ontology alignment with semantic and structural embeddings\",\"authors\":\"Zhigang Hao , Wolfgang Mayer , Jingbo Xia , Guoliang Li , Li Qin , Zaiwen Feng\",\"doi\":\"10.1016/j.websem.2023.100798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Ontology alignment is essential for data integration and interoperability across multiple applications across diverse disciplines. In recent decades, significant advancements have been made in the development of advanced methods and systems for ontology alignment. Empirical results have suggested that </span>ontological semantics can be effectively employed to enhance the alignment process. Besides, structural information is crucial for ontology alignment as it reflects the relations among adjacent concepts in the ontology. Previous works are mainly based on external lexicon and </span>predefined rules<span> based on ontological structure<span>. Recently, deep learning has imposed positive impacts on ontology alignment and obtained substantial improvement.</span></span></p><p><span>This paper proposes a new method based on ontology embedding incorporating the semantic and structural features. It utilizes the distance between the embedding of two ontological concepts to be aligned as the criterion for alignment. The proposed method is used to align two widely used food ontologies and three Chinese food classification ontologies. The experimental results show that our method enhances the performance compared to several state-of-the-art alignment systems, demonstrating the importance of learning semantic representation and structural representation. Furthermore, the proposed method is evaluated on several different tracks of the Ontology Alignment Evaluation Initiative (OAEI), and experimental results show that our method outperforms other baselines in effectiveness. The data and code can be obtained from: </span><span>https://github.com/haozhigang1111/Ontology-Alignment.git</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":49951,\"journal\":{\"name\":\"Journal of Web Semantics\",\"volume\":\"78 \",\"pages\":\"Article 100798\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Semantics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570826823000276\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826823000276","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Ontology alignment with semantic and structural embeddings
Ontology alignment is essential for data integration and interoperability across multiple applications across diverse disciplines. In recent decades, significant advancements have been made in the development of advanced methods and systems for ontology alignment. Empirical results have suggested that ontological semantics can be effectively employed to enhance the alignment process. Besides, structural information is crucial for ontology alignment as it reflects the relations among adjacent concepts in the ontology. Previous works are mainly based on external lexicon and predefined rules based on ontological structure. Recently, deep learning has imposed positive impacts on ontology alignment and obtained substantial improvement.
This paper proposes a new method based on ontology embedding incorporating the semantic and structural features. It utilizes the distance between the embedding of two ontological concepts to be aligned as the criterion for alignment. The proposed method is used to align two widely used food ontologies and three Chinese food classification ontologies. The experimental results show that our method enhances the performance compared to several state-of-the-art alignment systems, demonstrating the importance of learning semantic representation and structural representation. Furthermore, the proposed method is evaluated on several different tracks of the Ontology Alignment Evaluation Initiative (OAEI), and experimental results show that our method outperforms other baselines in effectiveness. The data and code can be obtained from: https://github.com/haozhigang1111/Ontology-Alignment.git.
期刊介绍:
The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.