{"title":"基于rdfs的饱和和原因来源支持的不断发展的知识图的在线维护","authors":"Khalid Belhajjame, Mohamed-Yassine Mejri","doi":"10.1016/j.websem.2023.100796","DOIUrl":null,"url":null,"abstract":"<div><p>Enterprise RDF knowledge graphs are often built using extraction data pipelines that are fed by several heterogeneous sources (relational databases, CSV files or even unstructured textual data). As a direct consequence, the construction of these KGs undergoes a number of changes in the early stages of their life cycle, which are initiated by a human developer and therefore need to be done interactively and efficiently. Driven by such needs, in this paper, we present a solution for the incremental maintenance of KGs given user-prescribed changes. A key feature of the proposed solution is the support of provenance collection that can be used to assist the developer in the analysis and debugging of the KG. Specifically, we strive to compute and maintain the provenance of asserted and inferred facts in the knowledge graph incrementally (and thus efficiently). The evaluation exercises we have conducted show the effectiveness of our solution and highlight the parameters that impact performance.</p></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"78 ","pages":"Article 100796"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online maintenance of evolving knowledge graphs with RDFS-based saturation and why-provenance support\",\"authors\":\"Khalid Belhajjame, Mohamed-Yassine Mejri\",\"doi\":\"10.1016/j.websem.2023.100796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enterprise RDF knowledge graphs are often built using extraction data pipelines that are fed by several heterogeneous sources (relational databases, CSV files or even unstructured textual data). As a direct consequence, the construction of these KGs undergoes a number of changes in the early stages of their life cycle, which are initiated by a human developer and therefore need to be done interactively and efficiently. Driven by such needs, in this paper, we present a solution for the incremental maintenance of KGs given user-prescribed changes. A key feature of the proposed solution is the support of provenance collection that can be used to assist the developer in the analysis and debugging of the KG. Specifically, we strive to compute and maintain the provenance of asserted and inferred facts in the knowledge graph incrementally (and thus efficiently). The evaluation exercises we have conducted show the effectiveness of our solution and highlight the parameters that impact performance.</p></div>\",\"PeriodicalId\":49951,\"journal\":{\"name\":\"Journal of Web Semantics\",\"volume\":\"78 \",\"pages\":\"Article 100796\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Semantics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570826823000252\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826823000252","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Online maintenance of evolving knowledge graphs with RDFS-based saturation and why-provenance support
Enterprise RDF knowledge graphs are often built using extraction data pipelines that are fed by several heterogeneous sources (relational databases, CSV files or even unstructured textual data). As a direct consequence, the construction of these KGs undergoes a number of changes in the early stages of their life cycle, which are initiated by a human developer and therefore need to be done interactively and efficiently. Driven by such needs, in this paper, we present a solution for the incremental maintenance of KGs given user-prescribed changes. A key feature of the proposed solution is the support of provenance collection that can be used to assist the developer in the analysis and debugging of the KG. Specifically, we strive to compute and maintain the provenance of asserted and inferred facts in the knowledge graph incrementally (and thus efficiently). The evaluation exercises we have conducted show the effectiveness of our solution and highlight the parameters that impact performance.
期刊介绍:
The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.