{"title":"低秩矩阵恢复和秩一测量的自适应迭代硬阈值","authors":"Yu Xia , Likai Zhou","doi":"10.1016/j.jco.2022.101725","DOIUrl":null,"url":null,"abstract":"<div><p>In low-rank matrix recovery, many kinds of measurements fail to meet the standard restricted isometry property (RIP), such as rank-one measurements, that is, <span><math><msub><mrow><mo>[</mo><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo>〈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>X</mi><mo>〉</mo></math></span> with <span><math><mtext>rank</mtext><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>m</mi></math></span><span>. Historical iterative hard thresholding sequence for low-rank matrix recovery and rank-one measurements was taken as </span><span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mtext>sign</mtext><mo>(</mo><mi>A</mi><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>−</mo><mi>y</mi><mo>)</mo><mo>)</mo><mo>)</mo></math></span>, which introduced the “tail” and “head” approximations <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, respectively. In this paper, we remove the term <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span> and provide a new iterative hard thresholding algorithm with adaptive step size (abbreviated as AIHT). The linear convergence analysis and stability results on AIHT are established under the </span><span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span>-RIP. Particularly, we discuss the rank-one Gaussian measurements under the tight upper and lower bounds on </span><span><math><mi>E</mi><msub><mrow><mo>‖</mo><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mn>1</mn></mrow></msub></math></span>, and provide better convergence rate and sampling complexity. Besides, several empirical experiments are provided to show that AIHT performs better than the historical rank-one iterative hard thresholding method.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive iterative hard thresholding for low-rank matrix recovery and rank-one measurements\",\"authors\":\"Yu Xia , Likai Zhou\",\"doi\":\"10.1016/j.jco.2022.101725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In low-rank matrix recovery, many kinds of measurements fail to meet the standard restricted isometry property (RIP), such as rank-one measurements, that is, <span><math><msub><mrow><mo>[</mo><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo>〈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>X</mi><mo>〉</mo></math></span> with <span><math><mtext>rank</mtext><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>m</mi></math></span><span>. Historical iterative hard thresholding sequence for low-rank matrix recovery and rank-one measurements was taken as </span><span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mtext>sign</mtext><mo>(</mo><mi>A</mi><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>−</mo><mi>y</mi><mo>)</mo><mo>)</mo><mo>)</mo></math></span>, which introduced the “tail” and “head” approximations <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, respectively. In this paper, we remove the term <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span> and provide a new iterative hard thresholding algorithm with adaptive step size (abbreviated as AIHT). The linear convergence analysis and stability results on AIHT are established under the </span><span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span>-RIP. Particularly, we discuss the rank-one Gaussian measurements under the tight upper and lower bounds on </span><span><math><mi>E</mi><msub><mrow><mo>‖</mo><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mn>1</mn></mrow></msub></math></span>, and provide better convergence rate and sampling complexity. Besides, several empirical experiments are provided to show that AIHT performs better than the historical rank-one iterative hard thresholding method.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X22000905\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X22000905","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Adaptive iterative hard thresholding for low-rank matrix recovery and rank-one measurements
In low-rank matrix recovery, many kinds of measurements fail to meet the standard restricted isometry property (RIP), such as rank-one measurements, that is, with , . Historical iterative hard thresholding sequence for low-rank matrix recovery and rank-one measurements was taken as , which introduced the “tail” and “head” approximations and , respectively. In this paper, we remove the term and provide a new iterative hard thresholding algorithm with adaptive step size (abbreviated as AIHT). The linear convergence analysis and stability results on AIHT are established under the -RIP. Particularly, we discuss the rank-one Gaussian measurements under the tight upper and lower bounds on , and provide better convergence rate and sampling complexity. Besides, several empirical experiments are provided to show that AIHT performs better than the historical rank-one iterative hard thresholding method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.