{"title":"真菌含精氨酸环二肽合成酶的最终揭示","authors":"Hang Li","doi":"10.1016/j.engmic.2023.100080","DOIUrl":null,"url":null,"abstract":"<div><p>Biosynthetic pathways without any identifiable core enzymes may encode unknown (biosynthetic route)–unknown (molecular structure) natural products. However, bioinformatics-guided mining for such unknown-unknown metabolites is challenging. Recently, an unknown-unknown biosynthetic route has been deciphered in fungi. It was found that a class of enzymes previously annotated as hypothetical proteins catalyze the biosynthesis of arginine-containing cyclodipeptides (CDPs). This advances the understanding of the biosynthesis of CDPs and highlights the vast potential of unknown-unknown natural products encoded by microbial genomes.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"3 2","pages":"Article 100080"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungal arginine-containing cyclodipeptide synthases are finally revealed\",\"authors\":\"Hang Li\",\"doi\":\"10.1016/j.engmic.2023.100080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biosynthetic pathways without any identifiable core enzymes may encode unknown (biosynthetic route)–unknown (molecular structure) natural products. However, bioinformatics-guided mining for such unknown-unknown metabolites is challenging. Recently, an unknown-unknown biosynthetic route has been deciphered in fungi. It was found that a class of enzymes previously annotated as hypothetical proteins catalyze the biosynthesis of arginine-containing cyclodipeptides (CDPs). This advances the understanding of the biosynthesis of CDPs and highlights the vast potential of unknown-unknown natural products encoded by microbial genomes.</p></div>\",\"PeriodicalId\":100478,\"journal\":{\"name\":\"Engineering Microbiology\",\"volume\":\"3 2\",\"pages\":\"Article 100080\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667370323000127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370323000127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fungal arginine-containing cyclodipeptide synthases are finally revealed
Biosynthetic pathways without any identifiable core enzymes may encode unknown (biosynthetic route)–unknown (molecular structure) natural products. However, bioinformatics-guided mining for such unknown-unknown metabolites is challenging. Recently, an unknown-unknown biosynthetic route has been deciphered in fungi. It was found that a class of enzymes previously annotated as hypothetical proteins catalyze the biosynthesis of arginine-containing cyclodipeptides (CDPs). This advances the understanding of the biosynthesis of CDPs and highlights the vast potential of unknown-unknown natural products encoded by microbial genomes.