Yali Qiu , Meiling Wu , Haodong Bao , Weifeng Liu , Yu Shen
{"title":"酿酒酵母菌葡萄糖和木糖共发酵工程:现状与展望","authors":"Yali Qiu , Meiling Wu , Haodong Bao , Weifeng Liu , Yu Shen","doi":"10.1016/j.engmic.2023.100084","DOIUrl":null,"url":null,"abstract":"<div><p>The use of non-food lignocellulosic biomass to produce ethanol fits into the strategy of a global circular economy with low dependence on fossil energy resources. Xylose is the second most abundant sugar in lignocellulosic hydrolysate, and its utilization in fermentation is a key issue in making the full use of raw plant materials for ethanol production and reduce production costs. <em>Saccharomyces cerevisiae</em> is the best ethanol producer but the organism is not a native xylose user. In recent years, great efforts have been made in the construction of xylose utilizing <em>S. cerevisiae</em> strains by metabolic and evolutionary engineering approaches. In addition, managing global transcriptional regulation works provides an effective means to increase the xylose utilization capacity of recombinant strains. Here we review the common strategies and research advances in the research field in order to facilitate the researches in xylose metabolism and xylose-based fermentation.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"3 3","pages":"Article 100084"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Engineering of Saccharomyces cerevisiae for co-fermentation of glucose and xylose: Current state and perspectives\",\"authors\":\"Yali Qiu , Meiling Wu , Haodong Bao , Weifeng Liu , Yu Shen\",\"doi\":\"10.1016/j.engmic.2023.100084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of non-food lignocellulosic biomass to produce ethanol fits into the strategy of a global circular economy with low dependence on fossil energy resources. Xylose is the second most abundant sugar in lignocellulosic hydrolysate, and its utilization in fermentation is a key issue in making the full use of raw plant materials for ethanol production and reduce production costs. <em>Saccharomyces cerevisiae</em> is the best ethanol producer but the organism is not a native xylose user. In recent years, great efforts have been made in the construction of xylose utilizing <em>S. cerevisiae</em> strains by metabolic and evolutionary engineering approaches. In addition, managing global transcriptional regulation works provides an effective means to increase the xylose utilization capacity of recombinant strains. Here we review the common strategies and research advances in the research field in order to facilitate the researches in xylose metabolism and xylose-based fermentation.</p></div>\",\"PeriodicalId\":100478,\"journal\":{\"name\":\"Engineering Microbiology\",\"volume\":\"3 3\",\"pages\":\"Article 100084\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667370323000164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370323000164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Engineering of Saccharomyces cerevisiae for co-fermentation of glucose and xylose: Current state and perspectives
The use of non-food lignocellulosic biomass to produce ethanol fits into the strategy of a global circular economy with low dependence on fossil energy resources. Xylose is the second most abundant sugar in lignocellulosic hydrolysate, and its utilization in fermentation is a key issue in making the full use of raw plant materials for ethanol production and reduce production costs. Saccharomyces cerevisiae is the best ethanol producer but the organism is not a native xylose user. In recent years, great efforts have been made in the construction of xylose utilizing S. cerevisiae strains by metabolic and evolutionary engineering approaches. In addition, managing global transcriptional regulation works provides an effective means to increase the xylose utilization capacity of recombinant strains. Here we review the common strategies and research advances in the research field in order to facilitate the researches in xylose metabolism and xylose-based fermentation.