{"title":"非重复扰动系统的鲁棒模型预测迭代学习控制","authors":"Chao He, Junmin Li, Sanyang Liu, Jiaxian Wang","doi":"10.1016/j.nahs.2023.101436","DOIUrl":null,"url":null,"abstract":"<div><p><span>Iterative Learning Control (ILC) is commonly used for </span>batch processes. However, it may face difficulties when dealing with non-repetitive disturbances and inconsistent initial states. In situations with non-repetitive disturbances, the output may disobey constraints and negatively impact tracking performance when using existing predictive ILC algorithms. This paper introduces a new model-predictive ILC incorporating feed-forward and feedback mechanisms. This new approach evaluates and attenuates the impact of non-repetitive disturbances on the output. As a result, constraints are guaranteed, and tracking performance is preserved and improved, even in the presence of non-repetitive disturbances. Furthermore, if the desired trajectory is unattainable, the proposed ILC can robustly track an optimal trajectory while still guaranteeing constraints. The convergence is proven rigorously. Finally, two examples are provided to demonstrate the effectiveness of this new approach.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"51 ","pages":"Article 101436"},"PeriodicalIF":3.7000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust model-based predictive iterative learning control for systems with non-repetitive disturbances\",\"authors\":\"Chao He, Junmin Li, Sanyang Liu, Jiaxian Wang\",\"doi\":\"10.1016/j.nahs.2023.101436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Iterative Learning Control (ILC) is commonly used for </span>batch processes. However, it may face difficulties when dealing with non-repetitive disturbances and inconsistent initial states. In situations with non-repetitive disturbances, the output may disobey constraints and negatively impact tracking performance when using existing predictive ILC algorithms. This paper introduces a new model-predictive ILC incorporating feed-forward and feedback mechanisms. This new approach evaluates and attenuates the impact of non-repetitive disturbances on the output. As a result, constraints are guaranteed, and tracking performance is preserved and improved, even in the presence of non-repetitive disturbances. Furthermore, if the desired trajectory is unattainable, the proposed ILC can robustly track an optimal trajectory while still guaranteeing constraints. The convergence is proven rigorously. Finally, two examples are provided to demonstrate the effectiveness of this new approach.</p></div>\",\"PeriodicalId\":49011,\"journal\":{\"name\":\"Nonlinear Analysis-Hybrid Systems\",\"volume\":\"51 \",\"pages\":\"Article 101436\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Hybrid Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751570X23001073\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X23001073","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Robust model-based predictive iterative learning control for systems with non-repetitive disturbances
Iterative Learning Control (ILC) is commonly used for batch processes. However, it may face difficulties when dealing with non-repetitive disturbances and inconsistent initial states. In situations with non-repetitive disturbances, the output may disobey constraints and negatively impact tracking performance when using existing predictive ILC algorithms. This paper introduces a new model-predictive ILC incorporating feed-forward and feedback mechanisms. This new approach evaluates and attenuates the impact of non-repetitive disturbances on the output. As a result, constraints are guaranteed, and tracking performance is preserved and improved, even in the presence of non-repetitive disturbances. Furthermore, if the desired trajectory is unattainable, the proposed ILC can robustly track an optimal trajectory while still guaranteeing constraints. The convergence is proven rigorously. Finally, two examples are provided to demonstrate the effectiveness of this new approach.
期刊介绍:
Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.