{"title":"基于变压器的感知对比水下图像增强网络","authors":"Na Cheng, Zhixuan Sun, Xuanbing Zhu, Hongyu Wang","doi":"10.1016/j.image.2023.117032","DOIUrl":null,"url":null,"abstract":"<div><p>Vision-based underwater image enhancement methods have received much attention for application in the fields of marine engineering and marine science. The absorption and scattering of light in real underwater scenes leads to severe information degradation in the acquired underwater images, thus limiting further development of underwater tasks. To solve these problems, a novel transformer-based perceptual contrastive network for underwater image enhancement methods (TPC-UIE) is proposed to achieve visually friendly and high-quality images, where contrastive learning<span> is applied to the underwater image enhancement (UIE) task for the first time. Specifically, to address the limitations of the pure convolution-based network, we embed the transformer into the UIE network to improve its ability to capture global dependencies. Then, the limits of the transformer are then taken into account as convolution is reintroduced to better capture local attention. At the same time, the dual-attention module strengthens the network’s focus on the spatial and color channels that are more severely attenuated. Finally, a perceptual contrastive regularization method is proposed, where a multi-loss function made up of reconstruction loss, perceptual loss, and contrastive loss jointly optimizes the model to simultaneously ensure texture detail, contrast, and color consistency. Experimental results on several existing datasets show that the TPC-UIE obtains excellent performance in both subjective and objective evaluations compared to other methods. In addition, the visual quality of the underwater images is significantly improved by the enhancement of the method and effectively facilitates further development of the underwater task.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117032"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transformer-based network for perceptual contrastive underwater image enhancement\",\"authors\":\"Na Cheng, Zhixuan Sun, Xuanbing Zhu, Hongyu Wang\",\"doi\":\"10.1016/j.image.2023.117032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vision-based underwater image enhancement methods have received much attention for application in the fields of marine engineering and marine science. The absorption and scattering of light in real underwater scenes leads to severe information degradation in the acquired underwater images, thus limiting further development of underwater tasks. To solve these problems, a novel transformer-based perceptual contrastive network for underwater image enhancement methods (TPC-UIE) is proposed to achieve visually friendly and high-quality images, where contrastive learning<span> is applied to the underwater image enhancement (UIE) task for the first time. Specifically, to address the limitations of the pure convolution-based network, we embed the transformer into the UIE network to improve its ability to capture global dependencies. Then, the limits of the transformer are then taken into account as convolution is reintroduced to better capture local attention. At the same time, the dual-attention module strengthens the network’s focus on the spatial and color channels that are more severely attenuated. Finally, a perceptual contrastive regularization method is proposed, where a multi-loss function made up of reconstruction loss, perceptual loss, and contrastive loss jointly optimizes the model to simultaneously ensure texture detail, contrast, and color consistency. Experimental results on several existing datasets show that the TPC-UIE obtains excellent performance in both subjective and objective evaluations compared to other methods. In addition, the visual quality of the underwater images is significantly improved by the enhancement of the method and effectively facilitates further development of the underwater task.</span></p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"118 \",\"pages\":\"Article 117032\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596523001145\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523001145","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A transformer-based network for perceptual contrastive underwater image enhancement
Vision-based underwater image enhancement methods have received much attention for application in the fields of marine engineering and marine science. The absorption and scattering of light in real underwater scenes leads to severe information degradation in the acquired underwater images, thus limiting further development of underwater tasks. To solve these problems, a novel transformer-based perceptual contrastive network for underwater image enhancement methods (TPC-UIE) is proposed to achieve visually friendly and high-quality images, where contrastive learning is applied to the underwater image enhancement (UIE) task for the first time. Specifically, to address the limitations of the pure convolution-based network, we embed the transformer into the UIE network to improve its ability to capture global dependencies. Then, the limits of the transformer are then taken into account as convolution is reintroduced to better capture local attention. At the same time, the dual-attention module strengthens the network’s focus on the spatial and color channels that are more severely attenuated. Finally, a perceptual contrastive regularization method is proposed, where a multi-loss function made up of reconstruction loss, perceptual loss, and contrastive loss jointly optimizes the model to simultaneously ensure texture detail, contrast, and color consistency. Experimental results on several existing datasets show that the TPC-UIE obtains excellent performance in both subjective and objective evaluations compared to other methods. In addition, the visual quality of the underwater images is significantly improved by the enhancement of the method and effectively facilitates further development of the underwater task.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.