Lu Pang , Anis Alazzawe , Madhurima Ray , Krishna Kant , Jeremy Swift
{"title":"现代存储系统的自适应智能分层","authors":"Lu Pang , Anis Alazzawe , Madhurima Ray , Krishna Kant , Jeremy Swift","doi":"10.1016/j.peva.2023.102332","DOIUrl":null,"url":null,"abstract":"<div><p><span>Enterprise systems routinely use tiered storage consisting of a hierarchy of storage devices that vary in speed and size. One key to obtaining good performance in such a hierarchy is to migrate data elements intelligently to the appropriate tier. For example, moving the most used data towards the fastest tier and the least used data towards the slowest tier. Tiering is typically done based on usage </span>statistics<span><span> over relatively long time periods. In this paper, we consider a much more agile tiering mechanism called Adaptive Intelligent Tiering (AIT). It can dynamically adapt to the changing behavior of storage accesses by the running applications. The AIT mechanism uses a deep learning model to generate a set of candidate movements and employs a </span>reinforcement learning mechanism to further refine the candidates. Based on extensive simulations in a 3-tier system, we show that the proposed scheme, compared with several other methods, enhances workload performance up to 85% on storage traces with a wide range of characteristics.</span></p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"160 ","pages":"Article 102332"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Intelligent Tiering for modern storage systems\",\"authors\":\"Lu Pang , Anis Alazzawe , Madhurima Ray , Krishna Kant , Jeremy Swift\",\"doi\":\"10.1016/j.peva.2023.102332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Enterprise systems routinely use tiered storage consisting of a hierarchy of storage devices that vary in speed and size. One key to obtaining good performance in such a hierarchy is to migrate data elements intelligently to the appropriate tier. For example, moving the most used data towards the fastest tier and the least used data towards the slowest tier. Tiering is typically done based on usage </span>statistics<span><span> over relatively long time periods. In this paper, we consider a much more agile tiering mechanism called Adaptive Intelligent Tiering (AIT). It can dynamically adapt to the changing behavior of storage accesses by the running applications. The AIT mechanism uses a deep learning model to generate a set of candidate movements and employs a </span>reinforcement learning mechanism to further refine the candidates. Based on extensive simulations in a 3-tier system, we show that the proposed scheme, compared with several other methods, enhances workload performance up to 85% on storage traces with a wide range of characteristics.</span></p></div>\",\"PeriodicalId\":19964,\"journal\":{\"name\":\"Performance Evaluation\",\"volume\":\"160 \",\"pages\":\"Article 102332\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166531623000020\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531623000020","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Adaptive Intelligent Tiering for modern storage systems
Enterprise systems routinely use tiered storage consisting of a hierarchy of storage devices that vary in speed and size. One key to obtaining good performance in such a hierarchy is to migrate data elements intelligently to the appropriate tier. For example, moving the most used data towards the fastest tier and the least used data towards the slowest tier. Tiering is typically done based on usage statistics over relatively long time periods. In this paper, we consider a much more agile tiering mechanism called Adaptive Intelligent Tiering (AIT). It can dynamically adapt to the changing behavior of storage accesses by the running applications. The AIT mechanism uses a deep learning model to generate a set of candidate movements and employs a reinforcement learning mechanism to further refine the candidates. Based on extensive simulations in a 3-tier system, we show that the proposed scheme, compared with several other methods, enhances workload performance up to 85% on storage traces with a wide range of characteristics.
期刊介绍:
Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions:
-Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques
-Provide new insights into the performance of computing and communication systems
-Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools.
More specifically, common application areas of interest include the performance of:
-Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management)
-System architecture, design and implementation
-Cognitive radio
-VANETs
-Social networks and media
-Energy efficient ICT
-Energy harvesting
-Data centers
-Data centric networks
-System reliability
-System tuning and capacity planning
-Wireless and sensor networks
-Autonomic and self-organizing systems
-Embedded systems
-Network science