揭示SrxFe1.5Mo0.5O6−σ中Sr的化学计量与高温CO2电解催化性能的关系

Xiuan Xi , Xiaoyu Liu , Lingui Huang , Jianwen Liu , Bo-Wen Zhang , Gadi Rothenberg , Xian-Zhu Fu , Jing-Li Luo
{"title":"揭示SrxFe1.5Mo0.5O6−σ中Sr的化学计量与高温CO2电解催化性能的关系","authors":"Xiuan Xi ,&nbsp;Xiaoyu Liu ,&nbsp;Lingui Huang ,&nbsp;Jianwen Liu ,&nbsp;Bo-Wen Zhang ,&nbsp;Gadi Rothenberg ,&nbsp;Xian-Zhu Fu ,&nbsp;Jing-Li Luo","doi":"10.1016/j.matre.2023.100179","DOIUrl":null,"url":null,"abstract":"<div><p>The solid oxide electrolytic cell (SOEC) is one of the most promising energy conversion and storage devices, which could convert CO<sub>2</sub> to CO with high Faradaic efficiency and production rate. However, the lack of active and stable cathode materials impedes their practical applications. Here we focus on the promising perovskite oxide cathode material Sr<sub>2</sub>Fe<sub>1.5</sub>Mo<sub>0.5</sub>O<sub>6−<em>σ</em></sub>, with the aim of understanding how A-atom stoichiometry and catalytic performance are linked. We find that increasing the strontium content in the perovskite improves the chemisorption of CO<sub>2</sub> on its surface, forming a SrCO<sub>3</sub> phase. This hinders the charge transfer and oxygen exchange processes. Simultaneously, strontoium segregation to the cathode surface facilitates coking of the surface during CO<sub>2</sub> electrolysis, which poisons the electrode. Consequently, a small number of Sr deficiencies are optimal for both electrochemical performance and long-term stability. Our results provide new insights for designing high-performance CO<sub>2</sub> electrolysis cathode materials.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"3 1","pages":"Article 100179"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unraveling the relationship between Sr stoichiometry in SrxFe1.5Mo0.5O6−σ and its catalytic performance for high-temperature CO2 electrolysis\",\"authors\":\"Xiuan Xi ,&nbsp;Xiaoyu Liu ,&nbsp;Lingui Huang ,&nbsp;Jianwen Liu ,&nbsp;Bo-Wen Zhang ,&nbsp;Gadi Rothenberg ,&nbsp;Xian-Zhu Fu ,&nbsp;Jing-Li Luo\",\"doi\":\"10.1016/j.matre.2023.100179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The solid oxide electrolytic cell (SOEC) is one of the most promising energy conversion and storage devices, which could convert CO<sub>2</sub> to CO with high Faradaic efficiency and production rate. However, the lack of active and stable cathode materials impedes their practical applications. Here we focus on the promising perovskite oxide cathode material Sr<sub>2</sub>Fe<sub>1.5</sub>Mo<sub>0.5</sub>O<sub>6−<em>σ</em></sub>, with the aim of understanding how A-atom stoichiometry and catalytic performance are linked. We find that increasing the strontium content in the perovskite improves the chemisorption of CO<sub>2</sub> on its surface, forming a SrCO<sub>3</sub> phase. This hinders the charge transfer and oxygen exchange processes. Simultaneously, strontoium segregation to the cathode surface facilitates coking of the surface during CO<sub>2</sub> electrolysis, which poisons the electrode. Consequently, a small number of Sr deficiencies are optimal for both electrochemical performance and long-term stability. Our results provide new insights for designing high-performance CO<sub>2</sub> electrolysis cathode materials.</p></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":\"3 1\",\"pages\":\"Article 100179\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666935823000058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935823000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

固体氧化物电解槽(SOEC)是最有前途的能量转换和存储装置之一,它可以以高法拉第效率和生产率将CO2转化为CO。然而,缺乏活性和稳定的阴极材料阻碍了它们的实际应用。在这里,我们重点研究了有前景的钙钛矿氧化物阴极材料Sr2Fe1.5Mo0.5O6-σ,目的是了解A原子化学计量和催化性能是如何联系在一起的。我们发现,增加钙钛矿中锶的含量可以改善CO2在其表面的化学吸附,形成SrCO3相。这阻碍了电荷转移和氧交换过程。同时,锶在阴极表面的偏析促进了CO2电解过程中表面的焦化,从而使电极中毒。因此,少量Sr缺陷对于电化学性能和长期稳定性都是最佳的。我们的研究结果为设计高性能CO2电解阴极材料提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unraveling the relationship between Sr stoichiometry in SrxFe1.5Mo0.5O6−σ and its catalytic performance for high-temperature CO2 electrolysis

The solid oxide electrolytic cell (SOEC) is one of the most promising energy conversion and storage devices, which could convert CO2 to CO with high Faradaic efficiency and production rate. However, the lack of active and stable cathode materials impedes their practical applications. Here we focus on the promising perovskite oxide cathode material Sr2Fe1.5Mo0.5O6−σ, with the aim of understanding how A-atom stoichiometry and catalytic performance are linked. We find that increasing the strontium content in the perovskite improves the chemisorption of CO2 on its surface, forming a SrCO3 phase. This hinders the charge transfer and oxygen exchange processes. Simultaneously, strontoium segregation to the cathode surface facilitates coking of the surface during CO2 electrolysis, which poisons the electrode. Consequently, a small number of Sr deficiencies are optimal for both electrochemical performance and long-term stability. Our results provide new insights for designing high-performance CO2 electrolysis cathode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
材料导报:能源(英文)
材料导报:能源(英文) Renewable Energy, Sustainability and the Environment, Nanotechnology
CiteScore
13.00
自引率
0.00%
发文量
0
审稿时长
50 days
期刊最新文献
Outside Front Cover Contents Advancements in biomass gasification and catalytic tar-cracking technologies Ionic buffer layer design for stabilizing Zn electrodes in aqueous Zn-based batteries Novel N-doped carbon nanotubes impregnated Mn spheres with polydopamine coating as an efficient polysulfide immobilizer for Li-S batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1