Pierre Maillot, Olivier Corby, Catherine Faron, Fabien Gandon, Franck Michel
{"title":"indexx:使用基于sparql的测试套件为RDF知识图建立索引的模型和框架","authors":"Pierre Maillot, Olivier Corby, Catherine Faron, Fabien Gandon, Franck Michel","doi":"10.1016/j.websem.2023.100775","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, a large number of RDF datasets have been built and published on the Web in fields as diverse as linguistics or life sciences, as well as general datasets such as DBpedia or Wikidata. The joint exploitation of these datasets requires specific knowledge about their content, access points, and commonalities. However, not all datasets contain a self-description, and not all access points can handle the complex queries used to generate such a description.</p><p>In this article, we provide a standard-based approach to generate the description of a dataset. The generated descriptions as well as the process of their computation are expressed using standard vocabularies and languages. We implemented our approach into a framework, called IndeGx, where each indexing feature and its computation is collaboratively and declaratively defined in a GitHub repository. We have experimented IndeGx on a set of 339 RDF datasets with endpoints listed in public catalogs, over 8 months. The results show that we can collect, as much as possible, important characteristics of the datasets depending on their availability and capacities. The resulting index captures the commonalities, variety and disparity in the offered content and services and it provides an important support to any application designed to query RDF datasets.</p></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"76 ","pages":"Article 100775"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"IndeGx: A model and a framework for indexing RDF knowledge graphs with SPARQL-based test suits\",\"authors\":\"Pierre Maillot, Olivier Corby, Catherine Faron, Fabien Gandon, Franck Michel\",\"doi\":\"10.1016/j.websem.2023.100775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, a large number of RDF datasets have been built and published on the Web in fields as diverse as linguistics or life sciences, as well as general datasets such as DBpedia or Wikidata. The joint exploitation of these datasets requires specific knowledge about their content, access points, and commonalities. However, not all datasets contain a self-description, and not all access points can handle the complex queries used to generate such a description.</p><p>In this article, we provide a standard-based approach to generate the description of a dataset. The generated descriptions as well as the process of their computation are expressed using standard vocabularies and languages. We implemented our approach into a framework, called IndeGx, where each indexing feature and its computation is collaboratively and declaratively defined in a GitHub repository. We have experimented IndeGx on a set of 339 RDF datasets with endpoints listed in public catalogs, over 8 months. The results show that we can collect, as much as possible, important characteristics of the datasets depending on their availability and capacities. The resulting index captures the commonalities, variety and disparity in the offered content and services and it provides an important support to any application designed to query RDF datasets.</p></div>\",\"PeriodicalId\":49951,\"journal\":{\"name\":\"Journal of Web Semantics\",\"volume\":\"76 \",\"pages\":\"Article 100775\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Semantics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570826823000045\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826823000045","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
IndeGx: A model and a framework for indexing RDF knowledge graphs with SPARQL-based test suits
In recent years, a large number of RDF datasets have been built and published on the Web in fields as diverse as linguistics or life sciences, as well as general datasets such as DBpedia or Wikidata. The joint exploitation of these datasets requires specific knowledge about their content, access points, and commonalities. However, not all datasets contain a self-description, and not all access points can handle the complex queries used to generate such a description.
In this article, we provide a standard-based approach to generate the description of a dataset. The generated descriptions as well as the process of their computation are expressed using standard vocabularies and languages. We implemented our approach into a framework, called IndeGx, where each indexing feature and its computation is collaboratively and declaratively defined in a GitHub repository. We have experimented IndeGx on a set of 339 RDF datasets with endpoints listed in public catalogs, over 8 months. The results show that we can collect, as much as possible, important characteristics of the datasets depending on their availability and capacities. The resulting index captures the commonalities, variety and disparity in the offered content and services and it provides an important support to any application designed to query RDF datasets.
期刊介绍:
The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.