回答计数问题与结构化的答案从文本

IF 2.1 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Web Semantics Pub Date : 2023-04-01 DOI:10.1016/j.websem.2022.100769
Shrestha Ghosh , Simon Razniewski , Gerhard Weikum
{"title":"回答计数问题与结构化的答案从文本","authors":"Shrestha Ghosh ,&nbsp;Simon Razniewski ,&nbsp;Gerhard Weikum","doi":"10.1016/j.websem.2022.100769","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this work we address the challenging case of answering count queries in web search, such as </span><em>number of songs by John Lennon</em><span>. Prior methods merely answer these with a single, and sometimes puzzling number or return a ranked list of text snippets with different numbers. This paper proposes a methodology for answering count queries with inference, contextualization and explanatory evidence. Unlike previous systems, our method infers final answers from multiple observations, supports semantic qualifiers for the counts, and provides evidence by enumerating representative instances. Experiments with a wide variety of queries, including existing benchmark show the benefits of our method, and the influence of specific parameter settings. Our code, data and an interactive system demonstration are publicly available at </span><span>https://github.com/ghoshs/CoQEx</span><svg><path></path></svg> and <span>https://nlcounqer.mpi-inf.mpg.de/</span><svg><path></path></svg>.</p></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"76 ","pages":"Article 100769"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Answering Count Questions with Structured Answers from Text\",\"authors\":\"Shrestha Ghosh ,&nbsp;Simon Razniewski ,&nbsp;Gerhard Weikum\",\"doi\":\"10.1016/j.websem.2022.100769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this work we address the challenging case of answering count queries in web search, such as </span><em>number of songs by John Lennon</em><span>. Prior methods merely answer these with a single, and sometimes puzzling number or return a ranked list of text snippets with different numbers. This paper proposes a methodology for answering count queries with inference, contextualization and explanatory evidence. Unlike previous systems, our method infers final answers from multiple observations, supports semantic qualifiers for the counts, and provides evidence by enumerating representative instances. Experiments with a wide variety of queries, including existing benchmark show the benefits of our method, and the influence of specific parameter settings. Our code, data and an interactive system demonstration are publicly available at </span><span>https://github.com/ghoshs/CoQEx</span><svg><path></path></svg> and <span>https://nlcounqer.mpi-inf.mpg.de/</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":49951,\"journal\":{\"name\":\"Journal of Web Semantics\",\"volume\":\"76 \",\"pages\":\"Article 100769\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Semantics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570826822000531\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826822000531","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们解决了在网络搜索中回答计数查询的挑战性案例,例如约翰·列侬的歌曲数量。以前的方法只是用一个数字来回答这些问题,有时甚至令人费解,或者返回一个不同数字的文本片段的排序列表。本文提出了一种利用推理、情境化和解释性证据回答计数查询的方法。与以前的系统不同,我们的方法从多个观察中推断出最终答案,支持计数的语义限定符,并通过枚举具有代表性的实例来提供证据。对各种查询的实验,包括现有的基准测试,显示了我们的方法的好处,以及特定参数设置的影响。我们的代码、数据和交互式系统演示可在https://github.com/ghoshs/CoQEx和https://nlcounqer.mpi-inf.mpg.de/.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Answering Count Questions with Structured Answers from Text

In this work we address the challenging case of answering count queries in web search, such as number of songs by John Lennon. Prior methods merely answer these with a single, and sometimes puzzling number or return a ranked list of text snippets with different numbers. This paper proposes a methodology for answering count queries with inference, contextualization and explanatory evidence. Unlike previous systems, our method infers final answers from multiple observations, supports semantic qualifiers for the counts, and provides evidence by enumerating representative instances. Experiments with a wide variety of queries, including existing benchmark show the benefits of our method, and the influence of specific parameter settings. Our code, data and an interactive system demonstration are publicly available at https://github.com/ghoshs/CoQEx and https://nlcounqer.mpi-inf.mpg.de/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Web Semantics
Journal of Web Semantics 工程技术-计算机:人工智能
CiteScore
6.20
自引率
12.00%
发文量
22
审稿时长
14.6 weeks
期刊介绍: The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.
期刊最新文献
Uniqorn: Unified question answering over RDF knowledge graphs and natural language text KAE: A property-based method for knowledge graph alignment and extension Multi-stream graph attention network for recommendation with knowledge graph Ontology design facilitating Wikibase integration — and a worked example for historical data Web3-DAO: An ontology for decentralized autonomous organizations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1