Kai Zhou , Zequn Wang , Yi-Qing Ni , Yang Zhang , Jiong Tang
{"title":"基于无人机的结构振动测量与状态评估计算机视觉研究综述","authors":"Kai Zhou , Zequn Wang , Yi-Qing Ni , Yang Zhang , Jiong Tang","doi":"10.1016/j.iintel.2023.100031","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid advance in camera sensor technology, the acquisition of high-resolution images or videos has become extremely convenient and cost-effective. Computer vision that extracts semantic knowledge directly from digital images or videos, offers a promising solution for non-contact and full-field structural vibration measurement and condition assessment. Unmanned aerial vehicles (UAVs), also known as flying robots or drones, are being actively developed to suit a wide range of applications. Taking advantage of its excellent mobility and flexibility, camera-equipped UAV systems can facilitate the use of computer vision, thus enhancing the capacity of the structural condition assessment. The current article aims to provide a concise survey of the recent progress and applications of UAV-based computer vision in the field of structural dynamics. The different aspects to be discussed include the UAV system design and algorithmic development in computer vision. The main challenges, future trends, and opportunities to advance the technology and close the gap between research and practice will also be stated.</p></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"2 2","pages":"Article 100031"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unmanned aerial vehicle-based computer vision for structural vibration measurement and condition assessment: A concise survey\",\"authors\":\"Kai Zhou , Zequn Wang , Yi-Qing Ni , Yang Zhang , Jiong Tang\",\"doi\":\"10.1016/j.iintel.2023.100031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid advance in camera sensor technology, the acquisition of high-resolution images or videos has become extremely convenient and cost-effective. Computer vision that extracts semantic knowledge directly from digital images or videos, offers a promising solution for non-contact and full-field structural vibration measurement and condition assessment. Unmanned aerial vehicles (UAVs), also known as flying robots or drones, are being actively developed to suit a wide range of applications. Taking advantage of its excellent mobility and flexibility, camera-equipped UAV systems can facilitate the use of computer vision, thus enhancing the capacity of the structural condition assessment. The current article aims to provide a concise survey of the recent progress and applications of UAV-based computer vision in the field of structural dynamics. The different aspects to be discussed include the UAV system design and algorithmic development in computer vision. The main challenges, future trends, and opportunities to advance the technology and close the gap between research and practice will also be stated.</p></div>\",\"PeriodicalId\":100791,\"journal\":{\"name\":\"Journal of Infrastructure Intelligence and Resilience\",\"volume\":\"2 2\",\"pages\":\"Article 100031\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrastructure Intelligence and Resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772991523000063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991523000063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unmanned aerial vehicle-based computer vision for structural vibration measurement and condition assessment: A concise survey
With the rapid advance in camera sensor technology, the acquisition of high-resolution images or videos has become extremely convenient and cost-effective. Computer vision that extracts semantic knowledge directly from digital images or videos, offers a promising solution for non-contact and full-field structural vibration measurement and condition assessment. Unmanned aerial vehicles (UAVs), also known as flying robots or drones, are being actively developed to suit a wide range of applications. Taking advantage of its excellent mobility and flexibility, camera-equipped UAV systems can facilitate the use of computer vision, thus enhancing the capacity of the structural condition assessment. The current article aims to provide a concise survey of the recent progress and applications of UAV-based computer vision in the field of structural dynamics. The different aspects to be discussed include the UAV system design and algorithmic development in computer vision. The main challenges, future trends, and opportunities to advance the technology and close the gap between research and practice will also be stated.