多模态rgb -热融合技术在外墙多缺陷检测中的比较

Xincong Yang , Runhao Guo , Heng Li
{"title":"多模态rgb -热融合技术在外墙多缺陷检测中的比较","authors":"Xincong Yang ,&nbsp;Runhao Guo ,&nbsp;Heng Li","doi":"10.1016/j.iintel.2023.100029","DOIUrl":null,"url":null,"abstract":"<div><p>Exterior wall inspections are critical to ensuring public safety around aging buildings in urban cities. Conventional manual approaches are dangerous, time-consuming and labor-intensive. AI-enabled drone platforms have recently become popular and provide an alternative to serving automated and intelligent inspections. However, current identification only investigates RGB image of visual defects or thermal images of thermal anomalies without considering the continuous monitoring and the conversion between multiple defects. To gain new insights with modality-specific information, this research therefore compares the performance of early, intermediate, and late multimodal RGB-Thermal images fusion techniques for multi-defect detection in facades, especially for detached tiles and missing tiles. Numerous RGB and thermals images from an ageing campus building were collected as a dataset and the classical UNet for image segmentation was modified as a benchmark. The comparative results regarding accuracy (mAP, ROC, and AUC) proved that early fusion model performed well in distinguishing detached tiles and missing tiles from complex and congested facades. Nevertheless, intermediate and late fusion models were proven to be more efficient and effective with an optimal architecture, achieving high mean average accuracy with much less parameters. In addition, the results also showed that multi-modal fusion techniques can significantly improve the performance of multi-defects detection without adding a large number of parameters to single-modal AI models.</p></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"2 2","pages":"Article 100029"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of multimodal RGB-thermal fusion techniques for exterior wall multi-defect detection\",\"authors\":\"Xincong Yang ,&nbsp;Runhao Guo ,&nbsp;Heng Li\",\"doi\":\"10.1016/j.iintel.2023.100029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exterior wall inspections are critical to ensuring public safety around aging buildings in urban cities. Conventional manual approaches are dangerous, time-consuming and labor-intensive. AI-enabled drone platforms have recently become popular and provide an alternative to serving automated and intelligent inspections. However, current identification only investigates RGB image of visual defects or thermal images of thermal anomalies without considering the continuous monitoring and the conversion between multiple defects. To gain new insights with modality-specific information, this research therefore compares the performance of early, intermediate, and late multimodal RGB-Thermal images fusion techniques for multi-defect detection in facades, especially for detached tiles and missing tiles. Numerous RGB and thermals images from an ageing campus building were collected as a dataset and the classical UNet for image segmentation was modified as a benchmark. The comparative results regarding accuracy (mAP, ROC, and AUC) proved that early fusion model performed well in distinguishing detached tiles and missing tiles from complex and congested facades. Nevertheless, intermediate and late fusion models were proven to be more efficient and effective with an optimal architecture, achieving high mean average accuracy with much less parameters. In addition, the results also showed that multi-modal fusion techniques can significantly improve the performance of multi-defects detection without adding a large number of parameters to single-modal AI models.</p></div>\",\"PeriodicalId\":100791,\"journal\":{\"name\":\"Journal of Infrastructure Intelligence and Resilience\",\"volume\":\"2 2\",\"pages\":\"Article 100029\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrastructure Intelligence and Resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277299152300004X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277299152300004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

外墙检查对于确保城市老化建筑周围的公共安全至关重要。传统的手动方法是危险的、耗时的和劳动密集型的。人工智能无人机平台最近变得很受欢迎,为自动化和智能检查提供了一种替代方案。然而,目前的识别只研究视觉缺陷的RGB图像或热异常的热图像,而没有考虑连续监测和多个缺陷之间的转换。因此,为了获得对模态特定信息的新见解,本研究比较了早期、中期和晚期多模态RGB热图像融合技术在立面多缺陷检测中的性能,尤其是对分离瓷砖和缺失瓷砖的检测。从一栋老化的校园建筑中收集了大量RGB和thermals图像作为数据集,并修改了用于图像分割的经典UNet作为基准。关于准确性(mAP、ROC和AUC)的比较结果证明,早期融合模型在区分复杂和拥挤外墙的脱落瓷砖和缺失瓷砖方面表现良好。尽管如此,中后期融合模型已被证明在优化架构下更高效,用更少的参数实现了高平均精度。此外,研究结果还表明,在不向单模态AI模型添加大量参数的情况下,多模态融合技术可以显著提高多缺陷检测的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of multimodal RGB-thermal fusion techniques for exterior wall multi-defect detection

Exterior wall inspections are critical to ensuring public safety around aging buildings in urban cities. Conventional manual approaches are dangerous, time-consuming and labor-intensive. AI-enabled drone platforms have recently become popular and provide an alternative to serving automated and intelligent inspections. However, current identification only investigates RGB image of visual defects or thermal images of thermal anomalies without considering the continuous monitoring and the conversion between multiple defects. To gain new insights with modality-specific information, this research therefore compares the performance of early, intermediate, and late multimodal RGB-Thermal images fusion techniques for multi-defect detection in facades, especially for detached tiles and missing tiles. Numerous RGB and thermals images from an ageing campus building were collected as a dataset and the classical UNet for image segmentation was modified as a benchmark. The comparative results regarding accuracy (mAP, ROC, and AUC) proved that early fusion model performed well in distinguishing detached tiles and missing tiles from complex and congested facades. Nevertheless, intermediate and late fusion models were proven to be more efficient and effective with an optimal architecture, achieving high mean average accuracy with much less parameters. In addition, the results also showed that multi-modal fusion techniques can significantly improve the performance of multi-defects detection without adding a large number of parameters to single-modal AI models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Review on optimization strategies of probabilistic diagnostic imaging methods An integrated management system (IMS) approach to sustainable construction development and management Quantitative risk analysis of road transportation of hazardous materials in coastal areas Multimodal vortex-induced vibration mitigation and design approach of bistable nonlinear energy sink inerter on bridge structure Enhanced operational modal analysis and change point detection for vibration-based structural health monitoring of bridges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1