基于图像的语音信号评价模型预测PESQ-ANFIS/FUZZY C-MEANS

IF 2.4 3区 计算机科学 Q2 ACOUSTICS Speech Communication Pub Date : 2023-10-01 DOI:10.1016/j.specom.2023.102972
Eder Pereira Neves , Marco Aparecido Queiroz Duarte , Jozue Vieira Filho , Caio Cesar Enside de Abreu , Bruno Rodrigues de Oliveira
{"title":"基于图像的语音信号评价模型预测PESQ-ANFIS/FUZZY C-MEANS","authors":"Eder Pereira Neves ,&nbsp;Marco Aparecido Queiroz Duarte ,&nbsp;Jozue Vieira Filho ,&nbsp;Caio Cesar Enside de Abreu ,&nbsp;Bruno Rodrigues de Oliveira","doi":"10.1016/j.specom.2023.102972","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a new method to evaluate the quality of speech signals through images generated from a psychoacoustic model to estimate PESQ (ITU-T P862) values using a first-order Fuzzy Sugeno approach implemented in the Adaptive Neuro-Fuzzy Inference System - ANFIS. The factors feeding the network were obtained using an image-processing technique from the perceptual model coefficients. All simulations were performed using a database containing clean and corrupted signals by eight types of noises found in everyday situations. The proposal uses the PESQ values of the signals to train the network. The analyses proved that the predictive performance will depend on the choice of a psychoacoustic model, the factor extraction technique, the combination of these factors, the fuzzification algorithm, and the type of membership function in the ANFIS input space. The data sets for training and testing for each signal directory were randomly created and executed fifty times. The proposal achieves the best prediction values for PESQ when the averages of the measurements reach MAPE <span><math><mrow><mo>≤</mo><mn>0</mn><mo>.</mo><mn>09</mn></mrow></math></span>, RMSE <span><math><mrow><mo>≤</mo><mn>0</mn><mo>.</mo><mn>20</mn></mrow></math></span>, and <span><math><mrow><msup><mrow><mtext>R</mtext></mrow><mrow><mn>2</mn></mrow></msup><mo>≥</mo><mn>95</mn></mrow></math></span>. In general, the approach provided satisfactory results compared to Multilayer Perceptron networks with their different learning algorithms, compared to another psychoacoustic model, to ITU-T P.563 and other non-intrusive methods that evaluate the quality of voice signals, and it was efficient regardless of the number of signals and the database used.</p></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"154 ","pages":"Article 102972"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model predictive PESQ-ANFIS/FUZZY C-MEANS for image-based speech signal evaluation\",\"authors\":\"Eder Pereira Neves ,&nbsp;Marco Aparecido Queiroz Duarte ,&nbsp;Jozue Vieira Filho ,&nbsp;Caio Cesar Enside de Abreu ,&nbsp;Bruno Rodrigues de Oliveira\",\"doi\":\"10.1016/j.specom.2023.102972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a new method to evaluate the quality of speech signals through images generated from a psychoacoustic model to estimate PESQ (ITU-T P862) values using a first-order Fuzzy Sugeno approach implemented in the Adaptive Neuro-Fuzzy Inference System - ANFIS. The factors feeding the network were obtained using an image-processing technique from the perceptual model coefficients. All simulations were performed using a database containing clean and corrupted signals by eight types of noises found in everyday situations. The proposal uses the PESQ values of the signals to train the network. The analyses proved that the predictive performance will depend on the choice of a psychoacoustic model, the factor extraction technique, the combination of these factors, the fuzzification algorithm, and the type of membership function in the ANFIS input space. The data sets for training and testing for each signal directory were randomly created and executed fifty times. The proposal achieves the best prediction values for PESQ when the averages of the measurements reach MAPE <span><math><mrow><mo>≤</mo><mn>0</mn><mo>.</mo><mn>09</mn></mrow></math></span>, RMSE <span><math><mrow><mo>≤</mo><mn>0</mn><mo>.</mo><mn>20</mn></mrow></math></span>, and <span><math><mrow><msup><mrow><mtext>R</mtext></mrow><mrow><mn>2</mn></mrow></msup><mo>≥</mo><mn>95</mn></mrow></math></span>. In general, the approach provided satisfactory results compared to Multilayer Perceptron networks with their different learning algorithms, compared to another psychoacoustic model, to ITU-T P.563 and other non-intrusive methods that evaluate the quality of voice signals, and it was efficient regardless of the number of signals and the database used.</p></div>\",\"PeriodicalId\":49485,\"journal\":{\"name\":\"Speech Communication\",\"volume\":\"154 \",\"pages\":\"Article 102972\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167639323001061\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639323001061","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的方法,通过心理声学模型生成的图像来评估语音信号的质量,以使用自适应神经模糊推理系统ANFIS中实现的一阶模糊Sugeno方法来估计PESQ(ITU-T P862)值。使用图像处理技术从感知模型系数中获得馈送网络的因素。所有模拟都是使用一个数据库进行的,该数据库包含日常情况下发现的八种类型的噪声产生的干净和损坏的信号。该方案使用信号的PESQ值来训练网络。分析证明,预测性能将取决于心理声学模型的选择、因素提取技术、这些因素的组合、模糊化算法以及ANFIS输入空间中的隶属函数类型。用于每个信号目录的训练和测试的数据集被随机创建并执行50次。当测量的平均值达到MAPE≤0.09、RMSE≤0.20和R2≥95时,该方案实现了PESQ的最佳预测值。一般来说,与具有不同学习算法的多层感知器网络相比,与另一心理声学模型相比,与ITU-T P.563和其他评估语音信号质量的非侵入性方法相比,该方法提供了令人满意的结果,并且无论信号数量和所用数据库如何,该方法都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model predictive PESQ-ANFIS/FUZZY C-MEANS for image-based speech signal evaluation

This paper presents a new method to evaluate the quality of speech signals through images generated from a psychoacoustic model to estimate PESQ (ITU-T P862) values using a first-order Fuzzy Sugeno approach implemented in the Adaptive Neuro-Fuzzy Inference System - ANFIS. The factors feeding the network were obtained using an image-processing technique from the perceptual model coefficients. All simulations were performed using a database containing clean and corrupted signals by eight types of noises found in everyday situations. The proposal uses the PESQ values of the signals to train the network. The analyses proved that the predictive performance will depend on the choice of a psychoacoustic model, the factor extraction technique, the combination of these factors, the fuzzification algorithm, and the type of membership function in the ANFIS input space. The data sets for training and testing for each signal directory were randomly created and executed fifty times. The proposal achieves the best prediction values for PESQ when the averages of the measurements reach MAPE 0.09, RMSE 0.20, and R295. In general, the approach provided satisfactory results compared to Multilayer Perceptron networks with their different learning algorithms, compared to another psychoacoustic model, to ITU-T P.563 and other non-intrusive methods that evaluate the quality of voice signals, and it was efficient regardless of the number of signals and the database used.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Speech Communication
Speech Communication 工程技术-计算机:跨学科应用
CiteScore
6.80
自引率
6.20%
发文量
94
审稿时长
19.2 weeks
期刊介绍: Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results. The journal''s primary objectives are: • to present a forum for the advancement of human and human-machine speech communication science; • to stimulate cross-fertilization between different fields of this domain; • to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.
期刊最新文献
Fixed frequency range empirical wavelet transform based acoustic and entropy features for speech emotion recognition AFP-Conformer: Asymptotic feature pyramid conformer for spoofing speech detection A robust temporal map of speech monitoring from planning to articulation The combined effects of bilingualism and musicianship on listeners’ perception of non-native lexical tones Evaluating the effects of continuous pitch and speech tempo modifications on perceptual speaker verification performance by familiar and unfamiliar listeners
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1