面向人类兼容的XAI:用背景知识的概念归纳法解释数据差异

IF 2.1 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Web Semantics Pub Date : 2023-09-26 DOI:10.1016/j.websem.2023.100807
Cara Leigh Widmer , Md Kamruzzaman Sarker , Srikanth Nadella , Joshua Fiechter , Ion Juvina , Brandon Minnery , Pascal Hitzler , Joshua Schwartz , Michael Raymer
{"title":"面向人类兼容的XAI:用背景知识的概念归纳法解释数据差异","authors":"Cara Leigh Widmer ,&nbsp;Md Kamruzzaman Sarker ,&nbsp;Srikanth Nadella ,&nbsp;Joshua Fiechter ,&nbsp;Ion Juvina ,&nbsp;Brandon Minnery ,&nbsp;Pascal Hitzler ,&nbsp;Joshua Schwartz ,&nbsp;Michael Raymer","doi":"10.1016/j.websem.2023.100807","DOIUrl":null,"url":null,"abstract":"<div><p>Concept induction, which is based on formal logical reasoning over description logics<span>, has been used in ontology engineering<span><span> in order to create ontology (TBox) axioms from the base data (ABox) graph. In this paper, we show that it can also be used to explain data differentials, for example in the context of Explainable AI (XAI), and we show that it can in fact be done in a way that is meaningful to a human observer. Our approach utilizes a large class hierarchy, curated from the Wikipedia category hierarchy, as background knowledge. To make the explanations easily understandable for non-specialists, the complex description logic explanations generated by our concept </span>induction system (ECII) were presented as a word list consisting of the concept names occurring in the highest rated system responses.</span></span></p></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"79 ","pages":"Article 100807"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards human-compatible XAI: Explaining data differentials with concept induction over background knowledge\",\"authors\":\"Cara Leigh Widmer ,&nbsp;Md Kamruzzaman Sarker ,&nbsp;Srikanth Nadella ,&nbsp;Joshua Fiechter ,&nbsp;Ion Juvina ,&nbsp;Brandon Minnery ,&nbsp;Pascal Hitzler ,&nbsp;Joshua Schwartz ,&nbsp;Michael Raymer\",\"doi\":\"10.1016/j.websem.2023.100807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Concept induction, which is based on formal logical reasoning over description logics<span>, has been used in ontology engineering<span><span> in order to create ontology (TBox) axioms from the base data (ABox) graph. In this paper, we show that it can also be used to explain data differentials, for example in the context of Explainable AI (XAI), and we show that it can in fact be done in a way that is meaningful to a human observer. Our approach utilizes a large class hierarchy, curated from the Wikipedia category hierarchy, as background knowledge. To make the explanations easily understandable for non-specialists, the complex description logic explanations generated by our concept </span>induction system (ECII) were presented as a word list consisting of the concept names occurring in the highest rated system responses.</span></span></p></div>\",\"PeriodicalId\":49951,\"journal\":{\"name\":\"Journal of Web Semantics\",\"volume\":\"79 \",\"pages\":\"Article 100807\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Semantics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570826823000367\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826823000367","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

概念归纳法是一种基于形式逻辑推理而不是描述逻辑的方法,它被用于本体工程中,以便从基础数据图(ABox)中创建本体公理。在本文中,我们展示了它也可以用来解释数据差异,例如在可解释人工智能(XAI)的背景下,我们展示了它实际上可以以一种对人类观察者有意义的方式完成。我们的方法利用了一个大的类层次结构,从维基百科分类层次结构中提取,作为背景知识。为了使非专业人士更容易理解这些解释,我们的概念归纳系统(ECII)生成的复杂描述逻辑解释以单词列表的形式呈现,其中包含出现在评分最高的系统反应中的概念名称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards human-compatible XAI: Explaining data differentials with concept induction over background knowledge

Concept induction, which is based on formal logical reasoning over description logics, has been used in ontology engineering in order to create ontology (TBox) axioms from the base data (ABox) graph. In this paper, we show that it can also be used to explain data differentials, for example in the context of Explainable AI (XAI), and we show that it can in fact be done in a way that is meaningful to a human observer. Our approach utilizes a large class hierarchy, curated from the Wikipedia category hierarchy, as background knowledge. To make the explanations easily understandable for non-specialists, the complex description logic explanations generated by our concept induction system (ECII) were presented as a word list consisting of the concept names occurring in the highest rated system responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Web Semantics
Journal of Web Semantics 工程技术-计算机:人工智能
CiteScore
6.20
自引率
12.00%
发文量
22
审稿时长
14.6 weeks
期刊介绍: The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.
期刊最新文献
Uniqorn: Unified question answering over RDF knowledge graphs and natural language text KAE: A property-based method for knowledge graph alignment and extension Multi-stream graph attention network for recommendation with knowledge graph Ontology design facilitating Wikibase integration — and a worked example for historical data Web3-DAO: An ontology for decentralized autonomous organizations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1