{"title":"机器学习驱动的加密网络流量分析:综合调查","authors":"Meng Shen;Ke Ye;Xingtong Liu;Liehuang Zhu;Jiawen Kang;Shui Yu;Qi Li;Ke Xu","doi":"10.1109/COMST.2022.3208196","DOIUrl":null,"url":null,"abstract":"Traffic analysis is the process of monitoring network activities, discovering specific patterns, and gleaning valuable information from network traffic. It can be applied in various fields such as network assert probing and anomaly detection. With the advent of network traffic encryption, however, traffic analysis becomes an arduous task. Due to the invisibility of packet payload, traditional traffic analysis methods relying on capturing valuable information from plaintext payload are likely to lose efficacy. Machine learning has been emerging as a powerful tool to extract informative features without getting access to payload, and thus is widely employed in encrypted traffic analysis. In this paper, we present a comprehensive survey on recent achievements in machine learning-powered encrypted traffic analysis. To begin with, we review the literature in this area and summarize the analysis goals that serve as the basis for literature classification. Then, we abstract the workflow of encrypted traffic analysis with machine learning tools, including traffic collection, traffic representation, traffic analysis method, and performance evaluation. For the surveyed studies, the requirements of classification granularity and information timeliness may vary a lot for different analysis goals. Hence, in terms of the goal of traffic analysis, we present a comprehensive review on existing studies according to four categories: network asset identification, network characterization, privacy leakage detection, and anomaly detection. Finally, we discuss the challenges and directions for future research on encrypted traffic analysis.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"25 1","pages":"791-824"},"PeriodicalIF":34.4000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Machine Learning-Powered Encrypted Network Traffic Analysis: A Comprehensive Survey\",\"authors\":\"Meng Shen;Ke Ye;Xingtong Liu;Liehuang Zhu;Jiawen Kang;Shui Yu;Qi Li;Ke Xu\",\"doi\":\"10.1109/COMST.2022.3208196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic analysis is the process of monitoring network activities, discovering specific patterns, and gleaning valuable information from network traffic. It can be applied in various fields such as network assert probing and anomaly detection. With the advent of network traffic encryption, however, traffic analysis becomes an arduous task. Due to the invisibility of packet payload, traditional traffic analysis methods relying on capturing valuable information from plaintext payload are likely to lose efficacy. Machine learning has been emerging as a powerful tool to extract informative features without getting access to payload, and thus is widely employed in encrypted traffic analysis. In this paper, we present a comprehensive survey on recent achievements in machine learning-powered encrypted traffic analysis. To begin with, we review the literature in this area and summarize the analysis goals that serve as the basis for literature classification. Then, we abstract the workflow of encrypted traffic analysis with machine learning tools, including traffic collection, traffic representation, traffic analysis method, and performance evaluation. For the surveyed studies, the requirements of classification granularity and information timeliness may vary a lot for different analysis goals. Hence, in terms of the goal of traffic analysis, we present a comprehensive review on existing studies according to four categories: network asset identification, network characterization, privacy leakage detection, and anomaly detection. Finally, we discuss the challenges and directions for future research on encrypted traffic analysis.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"25 1\",\"pages\":\"791-824\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9896143/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9896143/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Machine Learning-Powered Encrypted Network Traffic Analysis: A Comprehensive Survey
Traffic analysis is the process of monitoring network activities, discovering specific patterns, and gleaning valuable information from network traffic. It can be applied in various fields such as network assert probing and anomaly detection. With the advent of network traffic encryption, however, traffic analysis becomes an arduous task. Due to the invisibility of packet payload, traditional traffic analysis methods relying on capturing valuable information from plaintext payload are likely to lose efficacy. Machine learning has been emerging as a powerful tool to extract informative features without getting access to payload, and thus is widely employed in encrypted traffic analysis. In this paper, we present a comprehensive survey on recent achievements in machine learning-powered encrypted traffic analysis. To begin with, we review the literature in this area and summarize the analysis goals that serve as the basis for literature classification. Then, we abstract the workflow of encrypted traffic analysis with machine learning tools, including traffic collection, traffic representation, traffic analysis method, and performance evaluation. For the surveyed studies, the requirements of classification granularity and information timeliness may vary a lot for different analysis goals. Hence, in terms of the goal of traffic analysis, we present a comprehensive review on existing studies according to four categories: network asset identification, network characterization, privacy leakage detection, and anomaly detection. Finally, we discuss the challenges and directions for future research on encrypted traffic analysis.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.