{"title":"边缘WiFi传感:信号处理技术和现实世界系统的挑战","authors":"Steven M. Hernandez;Eyuphan Bulut","doi":"10.1109/COMST.2022.3209144","DOIUrl":null,"url":null,"abstract":"In this work, we evaluate the feasibility of deploying ubiquitous WiFi sensing systems at the edge and consider the applicability of existing techniques on constrained edge devices and what challenges still exist for deploying WiFi sensing devices outside of laboratory environments. Through an extensive survey of existing literature in the area of WiFi sensing, we discover common signal processing techniques and evaluate the applicability of these techniques for online edge systems. Based on these techniques, we develop a topology of components required for a low-cost WiFi sensing system and develop a low-cost WiFi sensing system using ESP32 IoT microcontroller edge devices. We perform numerous real world WiFi sensing experiments to thoroughly evaluate machine learning prediction accuracy by performing Tree-structured Parzen Estimator (TPE) hyperparameter optimization to independently identify optimal hyperparameters for each method. Additionally, we evaluate our system directly on-board the ESP32 with respect to computation time per method and overall sample throughput rate. Through this evaluation, we demonstrate how an edge WiFi sensing system enables online machine learning through the use of on-device inference and thus can be used for ubiquitous WiFi sensing system deployments.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"25 1","pages":"46-76"},"PeriodicalIF":34.4000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"WiFi Sensing on the Edge: Signal Processing Techniques and Challenges for Real-World Systems\",\"authors\":\"Steven M. Hernandez;Eyuphan Bulut\",\"doi\":\"10.1109/COMST.2022.3209144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we evaluate the feasibility of deploying ubiquitous WiFi sensing systems at the edge and consider the applicability of existing techniques on constrained edge devices and what challenges still exist for deploying WiFi sensing devices outside of laboratory environments. Through an extensive survey of existing literature in the area of WiFi sensing, we discover common signal processing techniques and evaluate the applicability of these techniques for online edge systems. Based on these techniques, we develop a topology of components required for a low-cost WiFi sensing system and develop a low-cost WiFi sensing system using ESP32 IoT microcontroller edge devices. We perform numerous real world WiFi sensing experiments to thoroughly evaluate machine learning prediction accuracy by performing Tree-structured Parzen Estimator (TPE) hyperparameter optimization to independently identify optimal hyperparameters for each method. Additionally, we evaluate our system directly on-board the ESP32 with respect to computation time per method and overall sample throughput rate. Through this evaluation, we demonstrate how an edge WiFi sensing system enables online machine learning through the use of on-device inference and thus can be used for ubiquitous WiFi sensing system deployments.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"25 1\",\"pages\":\"46-76\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9900419/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9900419/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
WiFi Sensing on the Edge: Signal Processing Techniques and Challenges for Real-World Systems
In this work, we evaluate the feasibility of deploying ubiquitous WiFi sensing systems at the edge and consider the applicability of existing techniques on constrained edge devices and what challenges still exist for deploying WiFi sensing devices outside of laboratory environments. Through an extensive survey of existing literature in the area of WiFi sensing, we discover common signal processing techniques and evaluate the applicability of these techniques for online edge systems. Based on these techniques, we develop a topology of components required for a low-cost WiFi sensing system and develop a low-cost WiFi sensing system using ESP32 IoT microcontroller edge devices. We perform numerous real world WiFi sensing experiments to thoroughly evaluate machine learning prediction accuracy by performing Tree-structured Parzen Estimator (TPE) hyperparameter optimization to independently identify optimal hyperparameters for each method. Additionally, we evaluate our system directly on-board the ESP32 with respect to computation time per method and overall sample throughput rate. Through this evaluation, we demonstrate how an edge WiFi sensing system enables online machine learning through the use of on-device inference and thus can be used for ubiquitous WiFi sensing system deployments.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.