{"title":"巴鲁哈尼原油芳烃作为石油发光团的光化学研究","authors":"Ulviyya Yolchuyeva, Rena Japharova, Amir Reza Vakhshouri, Matlab Khamiyev, Chimnaz Salmanova, Gunay Khamiyeva","doi":"10.1007/s13203-020-00253-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the photochemical conversion process of aromatic hydrocarbons in Balakhani oil well (BO) as a case study was investigated. To study the composition of BO, first, it has been separated into the first, second, third, and fourth groups of aromatics using chromatography absorption column. It has been established that the composition of the separated groups is mainly composed of mono-, tri-, and tetracyclic aromatic hydrocarbons. It has been shown that the optical densities of the absorption bands corresponding to bi-, tri-, and polycyclic aromatic hydrocarbons decrease with increasing the photo-irradiation period, hence their maximum absorption band undergoes the hypsochromatic shift, which is characteristic for electron donor substances. It has been determined that the photochemical conversion process in the sample oil (BO) occurs with radical-chain and molecular mechanisms. As a result of the photochemical conversion process of arene-type aromatic hydrocarbons, the first difference during the photooxidation of endoperoxides, hydroxynones, quinones, and phenes is the formation of cyclic peroxides and quinones.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"10 3","pages":"139 - 148"},"PeriodicalIF":0.1250,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-020-00253-9","citationCount":"2","resultStr":"{\"title\":\"Photochemical investigation of aromatic hydrocarbons of Balakhani crude oil as petroleum luminophores\",\"authors\":\"Ulviyya Yolchuyeva, Rena Japharova, Amir Reza Vakhshouri, Matlab Khamiyev, Chimnaz Salmanova, Gunay Khamiyeva\",\"doi\":\"10.1007/s13203-020-00253-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the photochemical conversion process of aromatic hydrocarbons in Balakhani oil well (BO) as a case study was investigated. To study the composition of BO, first, it has been separated into the first, second, third, and fourth groups of aromatics using chromatography absorption column. It has been established that the composition of the separated groups is mainly composed of mono-, tri-, and tetracyclic aromatic hydrocarbons. It has been shown that the optical densities of the absorption bands corresponding to bi-, tri-, and polycyclic aromatic hydrocarbons decrease with increasing the photo-irradiation period, hence their maximum absorption band undergoes the hypsochromatic shift, which is characteristic for electron donor substances. It has been determined that the photochemical conversion process in the sample oil (BO) occurs with radical-chain and molecular mechanisms. As a result of the photochemical conversion process of arene-type aromatic hydrocarbons, the first difference during the photooxidation of endoperoxides, hydroxynones, quinones, and phenes is the formation of cyclic peroxides and quinones.</p>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"10 3\",\"pages\":\"139 - 148\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13203-020-00253-9\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-020-00253-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-020-00253-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photochemical investigation of aromatic hydrocarbons of Balakhani crude oil as petroleum luminophores
In this paper, the photochemical conversion process of aromatic hydrocarbons in Balakhani oil well (BO) as a case study was investigated. To study the composition of BO, first, it has been separated into the first, second, third, and fourth groups of aromatics using chromatography absorption column. It has been established that the composition of the separated groups is mainly composed of mono-, tri-, and tetracyclic aromatic hydrocarbons. It has been shown that the optical densities of the absorption bands corresponding to bi-, tri-, and polycyclic aromatic hydrocarbons decrease with increasing the photo-irradiation period, hence their maximum absorption band undergoes the hypsochromatic shift, which is characteristic for electron donor substances. It has been determined that the photochemical conversion process in the sample oil (BO) occurs with radical-chain and molecular mechanisms. As a result of the photochemical conversion process of arene-type aromatic hydrocarbons, the first difference during the photooxidation of endoperoxides, hydroxynones, quinones, and phenes is the formation of cyclic peroxides and quinones.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.