Kannan Krishnan;B Yamini;Wael Mohammad Alenazy;M Nalini
{"title":"基于BSO-TLBO混合优化模型的WSN节能簇路由协议","authors":"Kannan Krishnan;B Yamini;Wael Mohammad Alenazy;M Nalini","doi":"10.1093/comjnl/bxab044","DOIUrl":null,"url":null,"abstract":"The most famous wireless sensor networks is one of the cheapest and rapidly evolving networks in modern communication. It can be used to sense various substantial and environmental specifications by providing cost-effective sensor devices. The development of these sensor networks is exploited to provide an energy-efficient weighted clustering method to increase the lifespan of the network. We propose a novel energy-efficient method, which utilizes the brainstorm algorithm in order to adopt the ideal cluster head (CH) to reduce energy draining. Furthermore, the effectiveness of the BrainStorm Optimization (BSO) algorithm is enhanced with the incorporation of the modified teacher–learner optimized (MTLBO) algorithm with it. The modified BSO–MTLBO algorithm can be used to attain an improved throughput, network lifetime, and to reduce the energy consumption by nodes and CH, death of sensor nodes, routing overhead. The performance of our proposed work is analyzed with other existing approaches and inferred that our approach performs better than all the other approaches.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"64 10","pages":"1477-1493"},"PeriodicalIF":1.5000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient Cluster-Based Routing Protocol for WSN Based on Hybrid BSO–TLBO Optimization Model\",\"authors\":\"Kannan Krishnan;B Yamini;Wael Mohammad Alenazy;M Nalini\",\"doi\":\"10.1093/comjnl/bxab044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most famous wireless sensor networks is one of the cheapest and rapidly evolving networks in modern communication. It can be used to sense various substantial and environmental specifications by providing cost-effective sensor devices. The development of these sensor networks is exploited to provide an energy-efficient weighted clustering method to increase the lifespan of the network. We propose a novel energy-efficient method, which utilizes the brainstorm algorithm in order to adopt the ideal cluster head (CH) to reduce energy draining. Furthermore, the effectiveness of the BrainStorm Optimization (BSO) algorithm is enhanced with the incorporation of the modified teacher–learner optimized (MTLBO) algorithm with it. The modified BSO–MTLBO algorithm can be used to attain an improved throughput, network lifetime, and to reduce the energy consumption by nodes and CH, death of sensor nodes, routing overhead. The performance of our proposed work is analyzed with other existing approaches and inferred that our approach performs better than all the other approaches.\",\"PeriodicalId\":50641,\"journal\":{\"name\":\"Computer Journal\",\"volume\":\"64 10\",\"pages\":\"1477-1493\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9619508/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9619508/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Energy-Efficient Cluster-Based Routing Protocol for WSN Based on Hybrid BSO–TLBO Optimization Model
The most famous wireless sensor networks is one of the cheapest and rapidly evolving networks in modern communication. It can be used to sense various substantial and environmental specifications by providing cost-effective sensor devices. The development of these sensor networks is exploited to provide an energy-efficient weighted clustering method to increase the lifespan of the network. We propose a novel energy-efficient method, which utilizes the brainstorm algorithm in order to adopt the ideal cluster head (CH) to reduce energy draining. Furthermore, the effectiveness of the BrainStorm Optimization (BSO) algorithm is enhanced with the incorporation of the modified teacher–learner optimized (MTLBO) algorithm with it. The modified BSO–MTLBO algorithm can be used to attain an improved throughput, network lifetime, and to reduce the energy consumption by nodes and CH, death of sensor nodes, routing overhead. The performance of our proposed work is analyzed with other existing approaches and inferred that our approach performs better than all the other approaches.
期刊介绍:
The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.