公平性GAN:使用生成式对抗网络生成具有公平性属性的数据集

IF 1.3 4区 计算机科学 Q1 Computer Science IBM Journal of Research and Development Pub Date : 2019-10-16 DOI:10.1147/JRD.2019.2945519
P. Sattigeri;S. C. Hoffman;V. Chenthamarakshan;K. R. Varshney
{"title":"公平性GAN:使用生成式对抗网络生成具有公平性属性的数据集","authors":"P. Sattigeri;S. C. Hoffman;V. Chenthamarakshan;K. R. Varshney","doi":"10.1147/JRD.2019.2945519","DOIUrl":null,"url":null,"abstract":"We introduce the Fairness GAN (generative adversarial network), an approach for generating a dataset that is plausibly similar to a given multimedia dataset, but is more fair with respect to protected attributes in decision making. We propose a novel auxiliary classifier GAN that strives for demographic parity or equality of opportunity and show empirical results on several datasets, including the CelebFaces Attributes (CelebA) dataset, the Quick, Draw! dataset, and a dataset of soccer player images and the offenses for which they were called. The proposed formulation is well suited to absorbing unlabeled data; we leverage this to augment the soccer dataset with the much larger CelebA dataset. The methodology tends to improve demographic parity and equality of opportunity while generating plausible images.","PeriodicalId":55034,"journal":{"name":"IBM Journal of Research and Development","volume":"63 4/5","pages":"3:1-3:9"},"PeriodicalIF":1.3000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1147/JRD.2019.2945519","citationCount":"108","resultStr":"{\"title\":\"Fairness GAN: Generating datasets with fairness properties using a generative adversarial network\",\"authors\":\"P. Sattigeri;S. C. Hoffman;V. Chenthamarakshan;K. R. Varshney\",\"doi\":\"10.1147/JRD.2019.2945519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the Fairness GAN (generative adversarial network), an approach for generating a dataset that is plausibly similar to a given multimedia dataset, but is more fair with respect to protected attributes in decision making. We propose a novel auxiliary classifier GAN that strives for demographic parity or equality of opportunity and show empirical results on several datasets, including the CelebFaces Attributes (CelebA) dataset, the Quick, Draw! dataset, and a dataset of soccer player images and the offenses for which they were called. The proposed formulation is well suited to absorbing unlabeled data; we leverage this to augment the soccer dataset with the much larger CelebA dataset. The methodology tends to improve demographic parity and equality of opportunity while generating plausible images.\",\"PeriodicalId\":55034,\"journal\":{\"name\":\"IBM Journal of Research and Development\",\"volume\":\"63 4/5\",\"pages\":\"3:1-3:9\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1147/JRD.2019.2945519\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IBM Journal of Research and Development\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8869910/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBM Journal of Research and Development","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/8869910/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 108

摘要

我们介绍了公平GAN(生成对抗性网络),这是一种生成数据集的方法,该数据集似乎与给定的多媒体数据集相似,但在决策中相对于受保护的属性更公平。我们提出了一种新的辅助分类器GAN,它致力于人口统计的均等或机会均等,并在几个数据集上显示了经验结果,包括CelebFaces Attributes(CelebA)数据集、Quick,Draw!数据集,以及足球运动员图像和他们被调用的违规行为的数据集。所提出的公式非常适合吸收未标记的数据;我们利用这一点用更大的CelebA数据集来扩充足球数据集。该方法倾向于改善人口均等和机会平等,同时生成合理的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fairness GAN: Generating datasets with fairness properties using a generative adversarial network
We introduce the Fairness GAN (generative adversarial network), an approach for generating a dataset that is plausibly similar to a given multimedia dataset, but is more fair with respect to protected attributes in decision making. We propose a novel auxiliary classifier GAN that strives for demographic parity or equality of opportunity and show empirical results on several datasets, including the CelebFaces Attributes (CelebA) dataset, the Quick, Draw! dataset, and a dataset of soccer player images and the offenses for which they were called. The proposed formulation is well suited to absorbing unlabeled data; we leverage this to augment the soccer dataset with the much larger CelebA dataset. The methodology tends to improve demographic parity and equality of opportunity while generating plausible images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IBM Journal of Research and Development
IBM Journal of Research and Development 工程技术-计算机:硬件
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The IBM Journal of Research and Development is a peer-reviewed technical journal, published bimonthly, which features the work of authors in the science, technology and engineering of information systems. Papers are written for the worldwide scientific research and development community and knowledgeable professionals. Submitted papers are welcome from the IBM technical community and from non-IBM authors on topics relevant to the scientific and technical content of the Journal.
期刊最新文献
Use of a smartwatch for home blood pressure measurement Numerical modeling of the behavior of a lithium battery after a collision Disaster Resilient Cities in Nepal: Disaster Management Efforts of Biratnagar Metropolitan City Status of Invasive Alien Plant species in Dhankuta Municipality Perceived Learning Environment: A Case of BBA Program at Dhankuta Multiple Campus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1