P. Sattigeri;S. C. Hoffman;V. Chenthamarakshan;K. R. Varshney
{"title":"公平性GAN:使用生成式对抗网络生成具有公平性属性的数据集","authors":"P. Sattigeri;S. C. Hoffman;V. Chenthamarakshan;K. R. Varshney","doi":"10.1147/JRD.2019.2945519","DOIUrl":null,"url":null,"abstract":"We introduce the Fairness GAN (generative adversarial network), an approach for generating a dataset that is plausibly similar to a given multimedia dataset, but is more fair with respect to protected attributes in decision making. We propose a novel auxiliary classifier GAN that strives for demographic parity or equality of opportunity and show empirical results on several datasets, including the CelebFaces Attributes (CelebA) dataset, the Quick, Draw! dataset, and a dataset of soccer player images and the offenses for which they were called. The proposed formulation is well suited to absorbing unlabeled data; we leverage this to augment the soccer dataset with the much larger CelebA dataset. The methodology tends to improve demographic parity and equality of opportunity while generating plausible images.","PeriodicalId":55034,"journal":{"name":"IBM Journal of Research and Development","volume":"63 4/5","pages":"3:1-3:9"},"PeriodicalIF":1.3000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1147/JRD.2019.2945519","citationCount":"108","resultStr":"{\"title\":\"Fairness GAN: Generating datasets with fairness properties using a generative adversarial network\",\"authors\":\"P. Sattigeri;S. C. Hoffman;V. Chenthamarakshan;K. R. Varshney\",\"doi\":\"10.1147/JRD.2019.2945519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the Fairness GAN (generative adversarial network), an approach for generating a dataset that is plausibly similar to a given multimedia dataset, but is more fair with respect to protected attributes in decision making. We propose a novel auxiliary classifier GAN that strives for demographic parity or equality of opportunity and show empirical results on several datasets, including the CelebFaces Attributes (CelebA) dataset, the Quick, Draw! dataset, and a dataset of soccer player images and the offenses for which they were called. The proposed formulation is well suited to absorbing unlabeled data; we leverage this to augment the soccer dataset with the much larger CelebA dataset. The methodology tends to improve demographic parity and equality of opportunity while generating plausible images.\",\"PeriodicalId\":55034,\"journal\":{\"name\":\"IBM Journal of Research and Development\",\"volume\":\"63 4/5\",\"pages\":\"3:1-3:9\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1147/JRD.2019.2945519\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IBM Journal of Research and Development\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8869910/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBM Journal of Research and Development","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/8869910/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Fairness GAN: Generating datasets with fairness properties using a generative adversarial network
We introduce the Fairness GAN (generative adversarial network), an approach for generating a dataset that is plausibly similar to a given multimedia dataset, but is more fair with respect to protected attributes in decision making. We propose a novel auxiliary classifier GAN that strives for demographic parity or equality of opportunity and show empirical results on several datasets, including the CelebFaces Attributes (CelebA) dataset, the Quick, Draw! dataset, and a dataset of soccer player images and the offenses for which they were called. The proposed formulation is well suited to absorbing unlabeled data; we leverage this to augment the soccer dataset with the much larger CelebA dataset. The methodology tends to improve demographic parity and equality of opportunity while generating plausible images.
期刊介绍:
The IBM Journal of Research and Development is a peer-reviewed technical journal, published bimonthly, which features the work of authors in the science, technology and engineering of information systems. Papers are written for the worldwide scientific research and development community and knowledgeable professionals.
Submitted papers are welcome from the IBM technical community and from non-IBM authors on topics relevant to the scientific and technical content of the Journal.