{"title":"Summit和Sierra超级计算机的冷却解决方案","authors":"S. Tian;T. Takken;V. Mahaney;C. Marroquin;M. Schultz;M. Hoffmeyer;Y. Yao;K. O'Connell;A. Yuksel;P. Coteus","doi":"10.1147/JRD.2019.2958902","DOIUrl":null,"url":null,"abstract":"Achieving optimal data center cooling efficiency requires effective water cooling of high-heat-density components, coupled with optimal warmer water temperatures and the correct order of water preheating from any air-cooled components. The Summit and Sierra supercomputers implemented efficient cooling by using high-performance cold plates to directly water-cool all central processing units (CPUs) and graphics processing units (GPUs) processors with warm inlet water. Cost performance was maximized by directly air-cooling the 10% to 15% of the compute drawer heat load generated by the lowest heat density components. For the Summit system, a rear-door heat exchanger allowed zero net heat load to air; the overall system efficiency was optimized by using the preheated water from the heat exchanger as an input to cool the higher power CPUs and GPUs.","PeriodicalId":55034,"journal":{"name":"IBM Journal of Research and Development","volume":"64 3/4","pages":"5:1-5:12"},"PeriodicalIF":1.3000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1147/JRD.2019.2958902","citationCount":"2","resultStr":"{\"title\":\"Summit and Sierra supercomputer cooling solutions\",\"authors\":\"S. Tian;T. Takken;V. Mahaney;C. Marroquin;M. Schultz;M. Hoffmeyer;Y. Yao;K. O'Connell;A. Yuksel;P. Coteus\",\"doi\":\"10.1147/JRD.2019.2958902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving optimal data center cooling efficiency requires effective water cooling of high-heat-density components, coupled with optimal warmer water temperatures and the correct order of water preheating from any air-cooled components. The Summit and Sierra supercomputers implemented efficient cooling by using high-performance cold plates to directly water-cool all central processing units (CPUs) and graphics processing units (GPUs) processors with warm inlet water. Cost performance was maximized by directly air-cooling the 10% to 15% of the compute drawer heat load generated by the lowest heat density components. For the Summit system, a rear-door heat exchanger allowed zero net heat load to air; the overall system efficiency was optimized by using the preheated water from the heat exchanger as an input to cool the higher power CPUs and GPUs.\",\"PeriodicalId\":55034,\"journal\":{\"name\":\"IBM Journal of Research and Development\",\"volume\":\"64 3/4\",\"pages\":\"5:1-5:12\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1147/JRD.2019.2958902\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IBM Journal of Research and Development\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8930295/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBM Journal of Research and Development","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/8930295/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Achieving optimal data center cooling efficiency requires effective water cooling of high-heat-density components, coupled with optimal warmer water temperatures and the correct order of water preheating from any air-cooled components. The Summit and Sierra supercomputers implemented efficient cooling by using high-performance cold plates to directly water-cool all central processing units (CPUs) and graphics processing units (GPUs) processors with warm inlet water. Cost performance was maximized by directly air-cooling the 10% to 15% of the compute drawer heat load generated by the lowest heat density components. For the Summit system, a rear-door heat exchanger allowed zero net heat load to air; the overall system efficiency was optimized by using the preheated water from the heat exchanger as an input to cool the higher power CPUs and GPUs.
期刊介绍:
The IBM Journal of Research and Development is a peer-reviewed technical journal, published bimonthly, which features the work of authors in the science, technology and engineering of information systems. Papers are written for the worldwide scientific research and development community and knowledgeable professionals.
Submitted papers are welcome from the IBM technical community and from non-IBM authors on topics relevant to the scientific and technical content of the Journal.