{"title":"IBM z15:物理设计改进,以显著增加相同技术中的内容","authors":"C. J. Berry;D. Wolpert;B. Bell;A. Jatkowski;J. Surprise;G. Strevig;J. Isakson;O. Geva;B. Deskin;M. Cichanowski;G. Biran;D. Hamid;C. Cavitt;G. Fredeman;D. Chidambarrao;B. Bruen;M. Wood;S. Carey;D. Turner;L. Sigal","doi":"10.1147/JRD.2020.3008099","DOIUrl":null,"url":null,"abstract":"The IBM Z processor continues to improve over previous System Z processors, but for the first time it does so without a technology improvement as the baseline enabler. The IBM z15 was designed in the same 14-nm High-Performance GLOBALFOUNDRIES technology as the IBM z14 and yet still added 20% more cores, doubled the L3 cache, and increased the L2 cache by a third while also adding a third peripheral component interconnect express (PCIe) port to the chip and an elliptic curve cryptography engine into each core. This article discusses the design, tool, and methodology enhancements required to increase the design content so significantly while maintaining the chip size and power limits from the previous z14 design. This article also discusses other design and methodology improvements that were made possible via the deeper understanding of the technology and how to more fully leverage it in a second generation.","PeriodicalId":55034,"journal":{"name":"IBM Journal of Research and Development","volume":"64 5/6","pages":"8:1-8:12"},"PeriodicalIF":1.3000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1147/JRD.2020.3008099","citationCount":"1","resultStr":"{\"title\":\"IBM z15: Physical design improvements to significantly increase content in the same technology\",\"authors\":\"C. J. Berry;D. Wolpert;B. Bell;A. Jatkowski;J. Surprise;G. Strevig;J. Isakson;O. Geva;B. Deskin;M. Cichanowski;G. Biran;D. Hamid;C. Cavitt;G. Fredeman;D. Chidambarrao;B. Bruen;M. Wood;S. Carey;D. Turner;L. Sigal\",\"doi\":\"10.1147/JRD.2020.3008099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The IBM Z processor continues to improve over previous System Z processors, but for the first time it does so without a technology improvement as the baseline enabler. The IBM z15 was designed in the same 14-nm High-Performance GLOBALFOUNDRIES technology as the IBM z14 and yet still added 20% more cores, doubled the L3 cache, and increased the L2 cache by a third while also adding a third peripheral component interconnect express (PCIe) port to the chip and an elliptic curve cryptography engine into each core. This article discusses the design, tool, and methodology enhancements required to increase the design content so significantly while maintaining the chip size and power limits from the previous z14 design. This article also discusses other design and methodology improvements that were made possible via the deeper understanding of the technology and how to more fully leverage it in a second generation.\",\"PeriodicalId\":55034,\"journal\":{\"name\":\"IBM Journal of Research and Development\",\"volume\":\"64 5/6\",\"pages\":\"8:1-8:12\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1147/JRD.2020.3008099\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IBM Journal of Research and Development\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9138711/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBM Journal of Research and Development","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9138711/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
IBM z15: Physical design improvements to significantly increase content in the same technology
The IBM Z processor continues to improve over previous System Z processors, but for the first time it does so without a technology improvement as the baseline enabler. The IBM z15 was designed in the same 14-nm High-Performance GLOBALFOUNDRIES technology as the IBM z14 and yet still added 20% more cores, doubled the L3 cache, and increased the L2 cache by a third while also adding a third peripheral component interconnect express (PCIe) port to the chip and an elliptic curve cryptography engine into each core. This article discusses the design, tool, and methodology enhancements required to increase the design content so significantly while maintaining the chip size and power limits from the previous z14 design. This article also discusses other design and methodology improvements that were made possible via the deeper understanding of the technology and how to more fully leverage it in a second generation.
期刊介绍:
The IBM Journal of Research and Development is a peer-reviewed technical journal, published bimonthly, which features the work of authors in the science, technology and engineering of information systems. Papers are written for the worldwide scientific research and development community and knowledgeable professionals.
Submitted papers are welcome from the IBM technical community and from non-IBM authors on topics relevant to the scientific and technical content of the Journal.