{"title":"服务迁移的机器学习:一项调查","authors":"Nassima Toumi;Miloud Bagaa;Adlen Ksentini","doi":"10.1109/COMST.2023.3273121","DOIUrl":null,"url":null,"abstract":"Future communication networks are envisioned to satisfy increasingly granular and dynamic requirements to accommodate the application and user demands. Indeed, novel immersive and mission-critical services necessitate increased computing and network resources, reduced communication latency, and guaranteed reliability. Thus, efficient and adaptive resource management schemes are required to provide and maintain sufficient levels of Quality of Experience (QoE) during the service life-cycle. Service migration is considered a key enabler of dynamic service orchestration. Indeed, moving services on demand is an efficient mechanism for user mobility support, load balancing in case of fluctuations in service demands, and hardware failure mitigation. However, service migration requires planning, as multiple parameters must be optimized to reduce service disruption to a minimum. Recent breakthroughs in computational capabilities allowed the emergence of Machine Learning as a tool for decision making that is expected to enable seamless automation of network resource management by predicting events and learning optimal decision policies. This paper surveys contributions applying Machine Learning (ML) methods to optimize service migration, providing a detailed literature review on recent advances in the field and establishing a classification of current research efforts with an analysis of their strengths and limitations. Finally, the paper provides insights on the main directions for future research.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"25 3","pages":"1991-2020"},"PeriodicalIF":34.4000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for Service Migration: A Survey\",\"authors\":\"Nassima Toumi;Miloud Bagaa;Adlen Ksentini\",\"doi\":\"10.1109/COMST.2023.3273121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future communication networks are envisioned to satisfy increasingly granular and dynamic requirements to accommodate the application and user demands. Indeed, novel immersive and mission-critical services necessitate increased computing and network resources, reduced communication latency, and guaranteed reliability. Thus, efficient and adaptive resource management schemes are required to provide and maintain sufficient levels of Quality of Experience (QoE) during the service life-cycle. Service migration is considered a key enabler of dynamic service orchestration. Indeed, moving services on demand is an efficient mechanism for user mobility support, load balancing in case of fluctuations in service demands, and hardware failure mitigation. However, service migration requires planning, as multiple parameters must be optimized to reduce service disruption to a minimum. Recent breakthroughs in computational capabilities allowed the emergence of Machine Learning as a tool for decision making that is expected to enable seamless automation of network resource management by predicting events and learning optimal decision policies. This paper surveys contributions applying Machine Learning (ML) methods to optimize service migration, providing a detailed literature review on recent advances in the field and establishing a classification of current research efforts with an analysis of their strengths and limitations. Finally, the paper provides insights on the main directions for future research.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"25 3\",\"pages\":\"1991-2020\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10120920/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10120920/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Future communication networks are envisioned to satisfy increasingly granular and dynamic requirements to accommodate the application and user demands. Indeed, novel immersive and mission-critical services necessitate increased computing and network resources, reduced communication latency, and guaranteed reliability. Thus, efficient and adaptive resource management schemes are required to provide and maintain sufficient levels of Quality of Experience (QoE) during the service life-cycle. Service migration is considered a key enabler of dynamic service orchestration. Indeed, moving services on demand is an efficient mechanism for user mobility support, load balancing in case of fluctuations in service demands, and hardware failure mitigation. However, service migration requires planning, as multiple parameters must be optimized to reduce service disruption to a minimum. Recent breakthroughs in computational capabilities allowed the emergence of Machine Learning as a tool for decision making that is expected to enable seamless automation of network resource management by predicting events and learning optimal decision policies. This paper surveys contributions applying Machine Learning (ML) methods to optimize service migration, providing a detailed literature review on recent advances in the field and establishing a classification of current research efforts with an analysis of their strengths and limitations. Finally, the paper provides insights on the main directions for future research.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.