Nour Moustafa;Nickolaos Koroniotis;Marwa Keshk;Albert Y. Zomaya;Zahir Tari
{"title":"物联网网络防御的可解释入侵检测:机遇与解决方案","authors":"Nour Moustafa;Nickolaos Koroniotis;Marwa Keshk;Albert Y. Zomaya;Zahir Tari","doi":"10.1109/COMST.2023.3280465","DOIUrl":null,"url":null,"abstract":"The field of Explainable Artificial Intelligence (XAI) has garnered considerable research attention in recent years, aiming to provide interpretability and confidence to the inner workings of state-of-the-art deep learning models. However, XAI-enhanced cybersecurity measures in the Internet of Things (IoT) and its sub-domains, require further investigation to provide effective discovery of attack surfaces, their corresponding vectors, and interpretable justification of model outputs. Cyber defence involves operations conducted in the cybersecurity field supporting mission objectives to identify and prevent cyberattacks using various tools and techniques, including intrusion detection systems (IDS), threat intelligence and hunting, and intrusion prevention. In cyber defence, especially anomaly-based IDS, the emerging applications of deep learning models require the interpretation of the models’ architecture and the explanation of models’ prediction to examine how cyberattacks would occur. This paper presents a comprehensive review of XAI techniques for anomaly-based intrusion detection in IoT networks. Firstly, we review IDSs focusing on anomaly-based detection techniques in IoT and how XAI models can augment them to provide trust and confidence in their detections. Secondly, we review AI models, including machine learning (ML) and deep learning (DL), for anomaly detection applications and IoT ecosystems. Moreover, we discuss DL’s ability to effectively learn from large-scale IoT datasets, accomplishing high performances in discovering and interpreting security events. Thirdly, we demonstrate recent research on the intersection of XAI, anomaly-based IDS and IoT. Finally, we discuss the current challenges and solutions of XAI for security applications in the cyber defence perspective of IoT networks, revealing future research directions. By analysing our findings, new cybersecurity applications that require XAI models emerge, assisting decision-makers in understanding and explaining security events in compromised IoT networks.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"25 3","pages":"1775-1807"},"PeriodicalIF":34.4000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Explainable Intrusion Detection for Cyber Defences in the Internet of Things: Opportunities and Solutions\",\"authors\":\"Nour Moustafa;Nickolaos Koroniotis;Marwa Keshk;Albert Y. Zomaya;Zahir Tari\",\"doi\":\"10.1109/COMST.2023.3280465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of Explainable Artificial Intelligence (XAI) has garnered considerable research attention in recent years, aiming to provide interpretability and confidence to the inner workings of state-of-the-art deep learning models. However, XAI-enhanced cybersecurity measures in the Internet of Things (IoT) and its sub-domains, require further investigation to provide effective discovery of attack surfaces, their corresponding vectors, and interpretable justification of model outputs. Cyber defence involves operations conducted in the cybersecurity field supporting mission objectives to identify and prevent cyberattacks using various tools and techniques, including intrusion detection systems (IDS), threat intelligence and hunting, and intrusion prevention. In cyber defence, especially anomaly-based IDS, the emerging applications of deep learning models require the interpretation of the models’ architecture and the explanation of models’ prediction to examine how cyberattacks would occur. This paper presents a comprehensive review of XAI techniques for anomaly-based intrusion detection in IoT networks. Firstly, we review IDSs focusing on anomaly-based detection techniques in IoT and how XAI models can augment them to provide trust and confidence in their detections. Secondly, we review AI models, including machine learning (ML) and deep learning (DL), for anomaly detection applications and IoT ecosystems. Moreover, we discuss DL’s ability to effectively learn from large-scale IoT datasets, accomplishing high performances in discovering and interpreting security events. Thirdly, we demonstrate recent research on the intersection of XAI, anomaly-based IDS and IoT. Finally, we discuss the current challenges and solutions of XAI for security applications in the cyber defence perspective of IoT networks, revealing future research directions. By analysing our findings, new cybersecurity applications that require XAI models emerge, assisting decision-makers in understanding and explaining security events in compromised IoT networks.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"25 3\",\"pages\":\"1775-1807\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10136827/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10136827/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Explainable Intrusion Detection for Cyber Defences in the Internet of Things: Opportunities and Solutions
The field of Explainable Artificial Intelligence (XAI) has garnered considerable research attention in recent years, aiming to provide interpretability and confidence to the inner workings of state-of-the-art deep learning models. However, XAI-enhanced cybersecurity measures in the Internet of Things (IoT) and its sub-domains, require further investigation to provide effective discovery of attack surfaces, their corresponding vectors, and interpretable justification of model outputs. Cyber defence involves operations conducted in the cybersecurity field supporting mission objectives to identify and prevent cyberattacks using various tools and techniques, including intrusion detection systems (IDS), threat intelligence and hunting, and intrusion prevention. In cyber defence, especially anomaly-based IDS, the emerging applications of deep learning models require the interpretation of the models’ architecture and the explanation of models’ prediction to examine how cyberattacks would occur. This paper presents a comprehensive review of XAI techniques for anomaly-based intrusion detection in IoT networks. Firstly, we review IDSs focusing on anomaly-based detection techniques in IoT and how XAI models can augment them to provide trust and confidence in their detections. Secondly, we review AI models, including machine learning (ML) and deep learning (DL), for anomaly detection applications and IoT ecosystems. Moreover, we discuss DL’s ability to effectively learn from large-scale IoT datasets, accomplishing high performances in discovering and interpreting security events. Thirdly, we demonstrate recent research on the intersection of XAI, anomaly-based IDS and IoT. Finally, we discuss the current challenges and solutions of XAI for security applications in the cyber defence perspective of IoT networks, revealing future research directions. By analysing our findings, new cybersecurity applications that require XAI models emerge, assisting decision-makers in understanding and explaining security events in compromised IoT networks.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.