Alessio Buscemi;Ion Turcanu;German Castignani;Andriy Panchenko;Thomas Engel;Kang G. Shin
{"title":"控制器区域网络逆向工程综述","authors":"Alessio Buscemi;Ion Turcanu;German Castignani;Andriy Panchenko;Thomas Engel;Kang G. Shin","doi":"10.1109/COMST.2023.3264928","DOIUrl":null,"url":null,"abstract":"Controller Area Network (CAN) is a masterless serial bus designed and widely used for the exchange of mission and time-critical information within commercial vehicles. In-vehicle communication is based on messages sent and received by Electronic Control Units (ECUs) connected to this serial bus network. Although unencrypted, CAN messages are not easy to interpret. In fact, Original Equipment Manufacturers (OEMs) attempt to achieve security through obscurity by encoding the data in their proprietary format, which is kept secret from the general public. As a result, the only way to obtain clear data is to reverse engineer CAN messages. Driven by the need for in-vehicle message interpretation, which is highly valuable in the automotive industry, researchers and companies have been working to make this process automated, fast, and standardized. In this paper, we provide a comprehensive review of the state of the art and summarize the major advances in CAN bus reverse engineering. We are the first to provide a taxonomy of CAN tokenization and translation techniques. Based on the reviewed literature, we highlight an important issue: the lack of a public and standardized dataset for the quantitative evaluation of translation algorithms. In response, we define a complete set of requirements for standardizing the data collection process. We also investigate the risks associated with the automation of CAN reverse engineering, in particular with respect to the security network and the safety and privacy of drivers and passengers. Finally, we discuss future research directions in CAN reverse engineering.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"25 3","pages":"1445-1481"},"PeriodicalIF":34.4000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Survey on Controller Area Network Reverse Engineering\",\"authors\":\"Alessio Buscemi;Ion Turcanu;German Castignani;Andriy Panchenko;Thomas Engel;Kang G. Shin\",\"doi\":\"10.1109/COMST.2023.3264928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controller Area Network (CAN) is a masterless serial bus designed and widely used for the exchange of mission and time-critical information within commercial vehicles. In-vehicle communication is based on messages sent and received by Electronic Control Units (ECUs) connected to this serial bus network. Although unencrypted, CAN messages are not easy to interpret. In fact, Original Equipment Manufacturers (OEMs) attempt to achieve security through obscurity by encoding the data in their proprietary format, which is kept secret from the general public. As a result, the only way to obtain clear data is to reverse engineer CAN messages. Driven by the need for in-vehicle message interpretation, which is highly valuable in the automotive industry, researchers and companies have been working to make this process automated, fast, and standardized. In this paper, we provide a comprehensive review of the state of the art and summarize the major advances in CAN bus reverse engineering. We are the first to provide a taxonomy of CAN tokenization and translation techniques. Based on the reviewed literature, we highlight an important issue: the lack of a public and standardized dataset for the quantitative evaluation of translation algorithms. In response, we define a complete set of requirements for standardizing the data collection process. We also investigate the risks associated with the automation of CAN reverse engineering, in particular with respect to the security network and the safety and privacy of drivers and passengers. Finally, we discuss future research directions in CAN reverse engineering.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"25 3\",\"pages\":\"1445-1481\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10092880/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10092880/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Survey on Controller Area Network Reverse Engineering
Controller Area Network (CAN) is a masterless serial bus designed and widely used for the exchange of mission and time-critical information within commercial vehicles. In-vehicle communication is based on messages sent and received by Electronic Control Units (ECUs) connected to this serial bus network. Although unencrypted, CAN messages are not easy to interpret. In fact, Original Equipment Manufacturers (OEMs) attempt to achieve security through obscurity by encoding the data in their proprietary format, which is kept secret from the general public. As a result, the only way to obtain clear data is to reverse engineer CAN messages. Driven by the need for in-vehicle message interpretation, which is highly valuable in the automotive industry, researchers and companies have been working to make this process automated, fast, and standardized. In this paper, we provide a comprehensive review of the state of the art and summarize the major advances in CAN bus reverse engineering. We are the first to provide a taxonomy of CAN tokenization and translation techniques. Based on the reviewed literature, we highlight an important issue: the lack of a public and standardized dataset for the quantitative evaluation of translation algorithms. In response, we define a complete set of requirements for standardizing the data collection process. We also investigate the risks associated with the automation of CAN reverse engineering, in particular with respect to the security network and the safety and privacy of drivers and passengers. Finally, we discuss future research directions in CAN reverse engineering.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.