6G网络自适应业务响应drl驱动的数字双功能虚拟化

Yihang Tao;Jun Wu;Xi Lin;Wu Yang
{"title":"6G网络自适应业务响应drl驱动的数字双功能虚拟化","authors":"Yihang Tao;Jun Wu;Xi Lin;Wu Yang","doi":"10.1109/LNET.2023.3269766","DOIUrl":null,"url":null,"abstract":"Digital twin networks (DTN) simulate and predict 6G network behaviors to support innovative 6G services. However, emerging 6G service requests are rapidly growing with dynamic digital twin resource demands, which brings challenges for digital twin resources management with quality of service (QoS) optimization. We propose a novel software-defined DTN architecture with digital twin function virtualization (DTFV) for adaptive 6G service response. Besides, we propose a proximal policy optimization deep reinforcement learning (PPO-DRL) based DTFV resource orchestration algorithm on realizing massive service response quality optimization. Experimental results show that the proposed solution outperforms heuristic digital twin resource management methods.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 2","pages":"125-129"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DRL-Driven Digital Twin Function Virtualization for Adaptive Service Response in 6G Networks\",\"authors\":\"Yihang Tao;Jun Wu;Xi Lin;Wu Yang\",\"doi\":\"10.1109/LNET.2023.3269766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital twin networks (DTN) simulate and predict 6G network behaviors to support innovative 6G services. However, emerging 6G service requests are rapidly growing with dynamic digital twin resource demands, which brings challenges for digital twin resources management with quality of service (QoS) optimization. We propose a novel software-defined DTN architecture with digital twin function virtualization (DTFV) for adaptive 6G service response. Besides, we propose a proximal policy optimization deep reinforcement learning (PPO-DRL) based DTFV resource orchestration algorithm on realizing massive service response quality optimization. Experimental results show that the proposed solution outperforms heuristic digital twin resource management methods.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"5 2\",\"pages\":\"125-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10107755/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10107755/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字孪生网络(DTN)模拟和预测6G网络行为,以支持创新的6G服务。然而,随着数字孪生资源的动态需求,新兴的6G服务请求正在快速增长,这给服务质量(QoS)优化的数字孪生资源管理带来了挑战。我们提出了一种新的软件定义DTN架构,该架构具有数字双功能虚拟化(DTFV),用于自适应6G服务响应。此外,为了实现大规模服务响应质量优化,我们提出了一种基于PPO-DRL的DTFV资源编排算法。实验结果表明,该解决方案优于启发式数字孪生资源管理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DRL-Driven Digital Twin Function Virtualization for Adaptive Service Response in 6G Networks
Digital twin networks (DTN) simulate and predict 6G network behaviors to support innovative 6G services. However, emerging 6G service requests are rapidly growing with dynamic digital twin resource demands, which brings challenges for digital twin resources management with quality of service (QoS) optimization. We propose a novel software-defined DTN architecture with digital twin function virtualization (DTFV) for adaptive 6G service response. Besides, we propose a proximal policy optimization deep reinforcement learning (PPO-DRL) based DTFV resource orchestration algorithm on realizing massive service response quality optimization. Experimental results show that the proposed solution outperforms heuristic digital twin resource management methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Networking Letters Author Guidelines IEEE COMMUNICATIONS SOCIETY IEEE Communications Society Optimal Classifier for an ML-Assisted Resource Allocation in Wireless Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1