无授权访问的智能资源分配:一种强化学习方法

Mariam Elsayem;Hatem Abou-Zeid;Ali Afana;Sidney Givigi
{"title":"无授权访问的智能资源分配:一种强化学习方法","authors":"Mariam Elsayem;Hatem Abou-Zeid;Ali Afana;Sidney Givigi","doi":"10.1109/LNET.2023.3299182","DOIUrl":null,"url":null,"abstract":"Future wireless networks will support applications demanding high data-rates, ultra-low latency, and high reliabilities. One technology for such ultra-reliable low latency communication (URLLC) is grant-free access for uplink resources, which enables user equipment (UE) to transmit data over pre-allocated resources, reducing signaling overhead and communication latency. This letter proposes a novel ensemble Deep Reinforcement Learning grant-allocator architecture combining offline and online learning providing robust performance with a wide range of dynamic network and UE scenarios. Results show enhancement of the overall latency of UEs for URLLC applications achieving less than 20 Transmission Time Interval latency for 95% of the transmissions.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 3","pages":"154-158"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Resource Allocation for Grant-Free Access: A Reinforcement Learning Approach\",\"authors\":\"Mariam Elsayem;Hatem Abou-Zeid;Ali Afana;Sidney Givigi\",\"doi\":\"10.1109/LNET.2023.3299182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future wireless networks will support applications demanding high data-rates, ultra-low latency, and high reliabilities. One technology for such ultra-reliable low latency communication (URLLC) is grant-free access for uplink resources, which enables user equipment (UE) to transmit data over pre-allocated resources, reducing signaling overhead and communication latency. This letter proposes a novel ensemble Deep Reinforcement Learning grant-allocator architecture combining offline and online learning providing robust performance with a wide range of dynamic network and UE scenarios. Results show enhancement of the overall latency of UEs for URLLC applications achieving less than 20 Transmission Time Interval latency for 95% of the transmissions.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"5 3\",\"pages\":\"154-158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10197180/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10197180/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

未来的无线网络将支持要求高数据速率、超低延迟和高可靠性的应用。用于这种超可靠低延迟通信(URLLC)的一种技术是对上行链路资源的免授权接入,这使得用户设备(UE)能够在预先分配的资源上传输数据,从而减少信令开销和通信延迟。这封信提出了一种新的集成深度强化学习授权分配器架构,该架构结合了离线和在线学习,在各种动态网络和UE场景中提供了强大的性能。结果显示,对于URLLC应用,UE的总体延迟得到了增强,实现了95%的传输的小于20的传输时间间隔延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Resource Allocation for Grant-Free Access: A Reinforcement Learning Approach
Future wireless networks will support applications demanding high data-rates, ultra-low latency, and high reliabilities. One technology for such ultra-reliable low latency communication (URLLC) is grant-free access for uplink resources, which enables user equipment (UE) to transmit data over pre-allocated resources, reducing signaling overhead and communication latency. This letter proposes a novel ensemble Deep Reinforcement Learning grant-allocator architecture combining offline and online learning providing robust performance with a wide range of dynamic network and UE scenarios. Results show enhancement of the overall latency of UEs for URLLC applications achieving less than 20 Transmission Time Interval latency for 95% of the transmissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Networking Letters Author Guidelines IEEE COMMUNICATIONS SOCIETY IEEE Communications Society Optimal Classifier for an ML-Assisted Resource Allocation in Wireless Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1