J. Calvente;L. Martinez-Salamero;H. Valderrama;E. Vidal-Idiarte
{"title":"利用磁耦合消除升压变换器中的右半平面零","authors":"J. Calvente;L. Martinez-Salamero;H. Valderrama;E. Vidal-Idiarte","doi":"10.1109/LPEL.2004.834615","DOIUrl":null,"url":null,"abstract":"A dynamic analysis of the boost converter with an output filter reveals that magnetic coupling between inductors allows transfer of the zeros to the left half-plane of the control-to-output transfer function. Similar results requiring smaller magnetic components are obtained by combining magnetic coupling with damping of the output filter. The analysis is based on the application of the Routh-Hurtwitz's criterion to the numerator of the transfer function in order to derive the design conditions for the converter parameters. A design example illustrates the procedure, and experimental results verify the theoretical predictions. The application of these techniques will allow the design of high efficiency voltage boost-based regulators with dynamic behavior similar to buck-derived structures.","PeriodicalId":100635,"journal":{"name":"IEEE Power Electronics Letters","volume":"2 2","pages":"58-62"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LPEL.2004.834615","citationCount":"77","resultStr":"{\"title\":\"Using magnetic coupling to eliminate right half-plane zeros in boost converters\",\"authors\":\"J. Calvente;L. Martinez-Salamero;H. Valderrama;E. Vidal-Idiarte\",\"doi\":\"10.1109/LPEL.2004.834615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dynamic analysis of the boost converter with an output filter reveals that magnetic coupling between inductors allows transfer of the zeros to the left half-plane of the control-to-output transfer function. Similar results requiring smaller magnetic components are obtained by combining magnetic coupling with damping of the output filter. The analysis is based on the application of the Routh-Hurtwitz's criterion to the numerator of the transfer function in order to derive the design conditions for the converter parameters. A design example illustrates the procedure, and experimental results verify the theoretical predictions. The application of these techniques will allow the design of high efficiency voltage boost-based regulators with dynamic behavior similar to buck-derived structures.\",\"PeriodicalId\":100635,\"journal\":{\"name\":\"IEEE Power Electronics Letters\",\"volume\":\"2 2\",\"pages\":\"58-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/LPEL.2004.834615\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Power Electronics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/1324657/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/1324657/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using magnetic coupling to eliminate right half-plane zeros in boost converters
A dynamic analysis of the boost converter with an output filter reveals that magnetic coupling between inductors allows transfer of the zeros to the left half-plane of the control-to-output transfer function. Similar results requiring smaller magnetic components are obtained by combining magnetic coupling with damping of the output filter. The analysis is based on the application of the Routh-Hurtwitz's criterion to the numerator of the transfer function in order to derive the design conditions for the converter parameters. A design example illustrates the procedure, and experimental results verify the theoretical predictions. The application of these techniques will allow the design of high efficiency voltage boost-based regulators with dynamic behavior similar to buck-derived structures.